Airy beam light sheet microscopy boosted by deep learning deconvolution

被引:8
作者
Stockhausen, Anne [1 ]
Rodriguez-Gatica, Juan Eduardo [1 ]
Schweihoff, Jens [2 ]
Schwarz, Martin Karl [2 ]
Kubitscheck, Ulrich [1 ]
机构
[1] Univ Bonn, Clausius Inst Phys & Theoret Chem, Wegelerstr 12, D-53115 Bonn, Germany
[2] Univ Bonn, Inst Expt Epileptol & Cognit Res EECR, Med Sch, Venusberg Campus 1, D-53127 Bonn, Germany
关键词
FLUORESCENCE MICROSCOPY; CELLS;
D O I
10.1364/OE.485699
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Common light sheet microscopy comes with a trade-off between light sheet width defining the optical sectioning and the usable field of view arising from the divergence of the illuminating Gaussian beam. To overcome this, low-diverging Airy beams have been introduced. Airy beams, however, exhibit side lobes degrading image contrast. Here, we constructed an Airy beam light sheet microscope, and developed a deep learning image deconvolution to remove the effects of the side lobes without knowledge of the point spread function. Using a generative adversarial network and high-quality training data, we significantly enhanced image contrast and improved the performance of a bicubic upscaling. We evaluated the performance with fluorescently labeled neurons in mouse brain tissue samples. We found that deep learning-based deconvolution was about 20-fold faster than the standard approach. The combination of Airy beam light sheet microscopy and deep learning deconvolution allows imaging large volumes rapidly and with high quality. & COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:10918 / 10935
页数:18
相关论文
共 58 条
[1]  
Abramowitz M., 1964, HANDBOOK OF MATHEMAT
[2]   Scanned light sheet microscopy with confocal slit detection [J].
Baumgart, Eugen ;
Kubitscheck, Ulrich .
OPTICS EXPRESS, 2012, 20 (19) :21805-21814
[3]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[4]  
Bradski G, 2000, DR DOBBS J, V25, P120
[5]  
Brownlee J., 2019, Wireless Commun. Netw.
[6]   Light-sheet fluorescence expansion microscopy: fast mapping of neural circuits at super resolution [J].
Buergers, Jana ;
Pavlova, Irina ;
Rodriguez-Gatica, Juan E. ;
Henneberger, Christian ;
Oeller, Marc ;
Ruland, Jan A. ;
Siebrasse, Jan P. ;
Kubitscheck, Ulrich ;
Schwarz, Martin K. .
NEUROPHOTONICS, 2019, 6 (01)
[7]  
Chang JB, 2017, NAT METHODS, V14, P593, DOI [10.1038/NMETH.4261, 10.1038/nmeth.4261]
[8]   Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution [J].
Chen, Bi-Chang ;
Legant, Wesley R. ;
Wang, Kai ;
Shao, Lin ;
Milkie, Daniel E. ;
Davidson, Michael W. ;
Janetopoulos, Chris ;
Wu, Xufeng S. ;
Hammer, John A., III ;
Liu, Zhe ;
English, Brian P. ;
Mimori-Kiyosue, Yuko ;
Romero, Daniel P. ;
Ritter, Alex T. ;
Lippincott-Schwartz, Jennifer ;
Fritz-Laylin, Lillian ;
Mullins, R. Dyche ;
Mitchell, Diana M. ;
Bembenek, Joshua N. ;
Reymann, Anne-Cecile ;
Boehme, Ralph ;
Grill, Stephan W. ;
Wang, Jennifer T. ;
Seydoux, Geraldine ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Betzig, Eric .
SCIENCE, 2014, 346 (6208) :439-+
[9]   Expansion microscopy [J].
Chen, Fei ;
Tillberg, Paul W. ;
Boyden, Edward S. .
SCIENCE, 2015, 347 (6221) :543-548
[10]   Widefield light sheet microscopy using an Airy beam combined with deep-learning super-resolution [J].
Corsetti, Stella ;
Wijesinghe, Philip ;
Poulton, Persephone B. ;
Sakata, Shuzo ;
Vyas, Khushi ;
Herrington, C. Simon ;
Nylk, Jonathan ;
Gasparoli, Federico ;
Dholakia, Kishan .
OSA CONTINUUM, 2020, 3 (04) :1068-1083