A DEGREE FORMULA FOR EQUIVARIANT COHOMOLOGY RINGS

被引:0
|
作者
Blumstein, Mark [1 ]
Duflot, Jeanne [2 ]
机构
[1] Poudre Global Acad, 2407 Laporte Ave, Ft Collins, CO 80521 USA
[2] Colorado State Univ, Math Dept, Ft Collins, CO 80523 USA
关键词
homology; homotopy; SPECTRUM; DUALITY;
D O I
10.4310/HHA.2023.v25.n1.a18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper generalizes a result of Lynn on the "degree" of an equivariant cohomology ring H*G(X). The degree of a graded module is a certain coefficient of its Poincare & PRIME; series, and is closely related to multiplicity. In the present paper, we study these commutative algebraic invariants for equivariant cohomol-ogy rings. The main theorem is an additivity formula for degree: � deg(H* G(X)) = [A,c]& ISIN;Q & PRIME;max(G,X) 1 |WG(A,c)|deg(H*CG(A,c)(c)). We also show how this formula relates to the additivity formula from commutative algebra, demonstrating both the algebraic and geometric character of the degree invariant.
引用
收藏
页码:345 / 365
页数:21
相关论文
共 50 条
  • [1] A DEGREE FORMULA FOR EQUIVARIANT COHOMOLOGY
    Lynn, Rebecca
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (01) : 309 - 339
  • [2] RING STRUCTURES OF RATIONAL EQUIVARIANT COHOMOLOGY RINGS AND RING HOMOMORPHISMS BETWEEN THEM
    Chen, Yanchang
    Wang, Yanying
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (02): : 475 - 485
  • [3] RING STRUCTURES OF MOD p EQUIVARIANT COHOMOLOGY RINGS AND RING HOMOMORPHISMS BETWEEN THEM
    Chen, Y.
    Wang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (02): : 529 - 542
  • [4] CONFORMAL BLOCKS AND EQUIVARIANT COHOMOLOGY
    Rimanyi, Richard
    Schechtman, Vadim
    Varchenko, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (03) : 561 - 581
  • [5] On the Spectrum of the Equivariant Cohomology Ring
    Goresky, Mark
    MacPherson, Robert
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (02): : 262 - 283
  • [6] Multiplicative structure in equivariant cohomology
    Hess, Kathryn
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (07) : 1680 - 1699
  • [7] EQUIVARIANT COHOMOLOGY THEORIES AND THE PATTERN MAP
    Adeyemo, Praise
    Sottile, Frank
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (02): : 375 - 393
  • [8] Connections on equivariant Hamiltonian Floer cohomology
    Seidel, Paul
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (03) : 587 - 644
  • [9] EQUIVARIANT CYCLES AND CANCELLATION FOR MOTIVIC COHOMOLOGY
    Heller, J.
    Voineagu, M.
    Ostvaer, P. A.
    DOCUMENTA MATHEMATICA, 2015, 20 : 269 - 332
  • [10] Equivariant intersection cohomology of the circle actions
    Royo Prieto, Jose Ignacio
    Saralegi-Aranguren, Martintxo E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 49 - 62