Impact of the manufacturing process on graphite blend electrodes with silicon nanoparticles for lithium-ion batteries

被引:17
|
作者
Dominguez, Diana Zapata [1 ,2 ]
Mondal, Brinti [1 ,2 ]
Gaberscek, Miran [5 ]
Morcrette, Mathieu [1 ,2 ,3 ,4 ]
Franco, Alejandro A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Picardie Jules Verne, Lab React & Chim Solides LRCS, CNRS, Hub Energie,UMR 7314, 15 Rue Baudelocque, F-80039 Amiens, France
[2] Reseau Stockage Electrochim Energie RS2E, CNRS, FR 3459, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] ALISTORE European Res Inst, CNRS, FR 3104, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
[5] Natl Inst Chem, Dept Mat Chem, Hajdrihova 19, Ljubljana 1000, Slovenia
基金
欧洲研究理事会;
关键词
Li-ion batteries; Silicon nanoparticles; Graphite; Slurry; Negative electrodes; Calendering; ANODES; TORTUOSITY; COMPOSITE; PERFORMANCE; BINDERS; DENSITY;
D O I
10.1016/j.jpowsour.2023.233367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Correlating the input/output parameters of the manufacturing process aims to understand the link between the different steps of the Lithium-Ion Battery (LiB) electrode-making process. Fostering the interrelation of the properties in silicon/graphite blends for fabricating negative electrodes benefits the comprehension, quantification, and prediction of LiB output properties. Here, we report the impact of the manufacturing parameters during mixing, coating, and calendering on the properties of silicon/graphite blend negative electrodes. The mixing process was evaluated depending on the graphite content, where the viscosity increases with its percentage. Moreover, the slurry rheology directly impacts the electrode stability when the coating is done by using broader comma gaps. The calendering step evidences a porosity threshold necessary for adequate ionic resistance, tortuosity factor, and cycling life. Strong calendering increased the current collector adhesion, ionic resistance, tortuosity factor, and high cycling instability. On the other hand, better cyclabilities are obtained at moderate calendered electrodes, exhibiting the lowest ionic resistances and tortuosity factors.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
    Shi, Feifei
    Song, Zhichao
    Ross, Philip N.
    Somorjai, Gabor A.
    Ritchie, Robert O.
    Komvopoulos, Kyriakos
    NATURE COMMUNICATIONS, 2016, 7
  • [32] Interactions of silicon nanoparticles with carboxymethyl cellulose and carboxylic acids in negative electrodes of lithium-ion batteries
    Jeschull, Fabian
    Scott, Flora
    Trabesinger, Sigita
    JOURNAL OF POWER SOURCES, 2019, 431 : 63 - 74
  • [33] Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries
    Pan, Jie
    Zhang, Qinglin
    Li, Juchuan
    Beck, Matthew J.
    Xiao, Xingcheng
    Cheng, Yang-Tse
    NANO ENERGY, 2015, 13 : 192 - 199
  • [34] Decreasing Irreversible Capacity of Graphite Electrodes in Lithium-Ion Batteries by Direct Contact of Graphite with Metallic Lithium
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2002, 38 : 1319 - 1327
  • [35] Powder Compaction Characteristics and Modeling of Calendering Process for Powder-Based Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries
    Gong, Xiangtao
    Gao, Zhongjia
    Wu, Kai Jen
    Fu, Jinzhao
    Wang, Yan
    Pan, Heng
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2025, 147 (04):
  • [36] Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries via Electrostatic Coating
    Schaelicke, Gerrit
    Landwehr, Inga
    Dinter, Alexander
    Pettinger, Karl-Heinz
    Haselrieder, Wolfgang
    Kwade, Arno
    ENERGY TECHNOLOGY, 2020, 8 (02)
  • [37] Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries
    Kim, Haebeen
    Kim, Tae Hun
    Ryu, Ji Heon
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2019, 22 (04): : 155 - 163
  • [38] High capacity graphite-silicon composite anode material for lithium-ion batteries
    Fuchsbichler, B.
    Stangl, C.
    Kren, H.
    Uhlig, F.
    Koller, S.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2889 - 2892
  • [39] The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries
    Wu, Jingxing
    Cao, Yinliang
    Zhao, Haimin
    Mao, Jianfeng
    Guo, Zaiping
    CARBON ENERGY, 2019, 1 (01) : 57 - 76
  • [40] Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries
    Chae, Sujong
    Choi, Seong-Hyeon
    Kim, Namhyung
    Sung, Jaekyung
    Cho, Jaephil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 110 - 135