Impact of the manufacturing process on graphite blend electrodes with silicon nanoparticles for lithium-ion batteries

被引:17
|
作者
Dominguez, Diana Zapata [1 ,2 ]
Mondal, Brinti [1 ,2 ]
Gaberscek, Miran [5 ]
Morcrette, Mathieu [1 ,2 ,3 ,4 ]
Franco, Alejandro A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Picardie Jules Verne, Lab React & Chim Solides LRCS, CNRS, Hub Energie,UMR 7314, 15 Rue Baudelocque, F-80039 Amiens, France
[2] Reseau Stockage Electrochim Energie RS2E, CNRS, FR 3459, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] ALISTORE European Res Inst, CNRS, FR 3104, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
[5] Natl Inst Chem, Dept Mat Chem, Hajdrihova 19, Ljubljana 1000, Slovenia
基金
欧洲研究理事会;
关键词
Li-ion batteries; Silicon nanoparticles; Graphite; Slurry; Negative electrodes; Calendering; ANODES; TORTUOSITY; COMPOSITE; PERFORMANCE; BINDERS; DENSITY;
D O I
10.1016/j.jpowsour.2023.233367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Correlating the input/output parameters of the manufacturing process aims to understand the link between the different steps of the Lithium-Ion Battery (LiB) electrode-making process. Fostering the interrelation of the properties in silicon/graphite blends for fabricating negative electrodes benefits the comprehension, quantification, and prediction of LiB output properties. Here, we report the impact of the manufacturing parameters during mixing, coating, and calendering on the properties of silicon/graphite blend negative electrodes. The mixing process was evaluated depending on the graphite content, where the viscosity increases with its percentage. Moreover, the slurry rheology directly impacts the electrode stability when the coating is done by using broader comma gaps. The calendering step evidences a porosity threshold necessary for adequate ionic resistance, tortuosity factor, and cycling life. Strong calendering increased the current collector adhesion, ionic resistance, tortuosity factor, and high cycling instability. On the other hand, better cyclabilities are obtained at moderate calendered electrodes, exhibiting the lowest ionic resistances and tortuosity factors.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effect of carboxymethyl cellulose on silicon dispersion and the performance of graphite/Si-based electrodes for lithium-ion batteries
    Kim, Kyeong Jin
    Ahn, Kyung Hyun
    POWDER TECHNOLOGY, 2025, 452
  • [22] Hydrogenated Amorphous Silicon-Based Nanomaterials as Alternative Electrodes to Graphite for Lithium-Ion Batteries
    Barrio, Rocio
    Gonzalez, Nieves
    Portugal, Alvaro
    Morant, Carmen
    Javier Gandia, Jose
    NANOMATERIALS, 2022, 12 (24)
  • [23] Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries
    Zhang, Wen
    Gui, Siwei
    Li, Wanming
    Tu, Shuibin
    Li, Guocheng
    Zhang, Yun
    Sun, Yongming
    Xie, Jingying
    Zhou, Huamin
    Yang, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (46) : 51954 - 51964
  • [24] Ternary Cathode Blend Electrodes for Environmentally Friendly Lithium-Ion Batteries
    Jobst, Nicola Michael
    Hoffmann, Alice
    Klein, Andreas
    Zink, Stefan
    Wohlfahrt-Mehrens, Margret
    CHEMSUSCHEM, 2020, 13 (15) : 3928 - 3936
  • [25] Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries
    Ludwig, Brandon
    Zheng, Zhangfeng
    Shou, Wan
    Wang, Yan
    Pan, Heng
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Acrylic Acid-Based Copolymers as Functional Binder for Silicon/Graphite Composite Electrode in Lithium-Ion Batteries
    Aoki, Shoko
    Han, Zhen-Ji
    Yamagiwa, Kiyofumi
    Yabuuchi, Naoaki
    Murase, Masahiro
    Okamoto, Kuniaki
    Kiyosu, Takahiro
    Satoh, Michihiko
    Komaba, Shinichi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (12) : A2245 - A2249
  • [27] Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-Ion Batteries
    Martin, Cedric
    Alias, Melanie
    Christien, Frederic
    Crosnier, Olivier
    Belanger, Daniel
    Brousse, Thierry
    ADVANCED MATERIALS, 2009, 21 (46) : 4735 - +
  • [28] Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries
    Tan, Tian
    Lee, Pui-Kit
    Yu, Denis Y. W.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 166 (03) : A5210 - A5214
  • [29] Improvement strategies and research progress of silicon/graphite composites in lithium-ion batteries
    Zhang, Weitao
    Han, Peisong
    Liu, Yiqing
    Lin, Xiaoming
    Wu, Yongbo
    FLATCHEM, 2025, 50
  • [30] Modeling the Impact of Manufacturing Uncertainties on Lithium-Ion Batteries
    Schmidt, Oke
    Thomitzek, Matthias
    Roeder, Fridolin
    Thiede, Sebastian
    Herrmann, Christoph
    Krewer, Ulrike
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (06)