Impact of the manufacturing process on graphite blend electrodes with silicon nanoparticles for lithium-ion batteries

被引:17
|
作者
Dominguez, Diana Zapata [1 ,2 ]
Mondal, Brinti [1 ,2 ]
Gaberscek, Miran [5 ]
Morcrette, Mathieu [1 ,2 ,3 ,4 ]
Franco, Alejandro A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Picardie Jules Verne, Lab React & Chim Solides LRCS, CNRS, Hub Energie,UMR 7314, 15 Rue Baudelocque, F-80039 Amiens, France
[2] Reseau Stockage Electrochim Energie RS2E, CNRS, FR 3459, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] ALISTORE European Res Inst, CNRS, FR 3104, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
[5] Natl Inst Chem, Dept Mat Chem, Hajdrihova 19, Ljubljana 1000, Slovenia
基金
欧洲研究理事会;
关键词
Li-ion batteries; Silicon nanoparticles; Graphite; Slurry; Negative electrodes; Calendering; ANODES; TORTUOSITY; COMPOSITE; PERFORMANCE; BINDERS; DENSITY;
D O I
10.1016/j.jpowsour.2023.233367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Correlating the input/output parameters of the manufacturing process aims to understand the link between the different steps of the Lithium-Ion Battery (LiB) electrode-making process. Fostering the interrelation of the properties in silicon/graphite blends for fabricating negative electrodes benefits the comprehension, quantification, and prediction of LiB output properties. Here, we report the impact of the manufacturing parameters during mixing, coating, and calendering on the properties of silicon/graphite blend negative electrodes. The mixing process was evaluated depending on the graphite content, where the viscosity increases with its percentage. Moreover, the slurry rheology directly impacts the electrode stability when the coating is done by using broader comma gaps. The calendering step evidences a porosity threshold necessary for adequate ionic resistance, tortuosity factor, and cycling life. Strong calendering increased the current collector adhesion, ionic resistance, tortuosity factor, and high cycling instability. On the other hand, better cyclabilities are obtained at moderate calendered electrodes, exhibiting the lowest ionic resistances and tortuosity factors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Microstructural design of printed graphite electrodes for lithium-ion batteries
    Gastol, Dominika
    Capener, Matthew
    Reynolds, Carl
    Constable, Christopher
    Kendrick, Emma
    MATERIALS & DESIGN, 2021, 205
  • [2] Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries
    Wetjen, Morten
    Pritzl, Daniel
    Jung, Roland
    Solchenbach, Sophie
    Ghadimi, Reza
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2840 - A2852
  • [3] Metal Carbide Additives in Graphite-Silicon Composites for Lithium-Ion Batteries
    Pinuela-Noval, Juan
    Fernandez-Gonzalez, Daniel
    Brutti, Sergio
    Suarez, Marta
    Mazzei, Franco
    Navarra, Maria Assunta
    Verdeja, Luis Felipe
    Fernandez, Adolfo
    Agostini, Marco
    CHEMELECTROCHEM, 2023, 10 (21)
  • [4] Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries
    Yao, Koffi P. C.
    Okasinski, John S.
    Kalaga, Kaushik
    Almer, Jonathan D.
    Abraham, Daniel P.
    ADVANCED ENERGY MATERIALS, 2019, 9 (08)
  • [5] A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes
    Ai, Weilong
    Kirkaldy, Niall
    Jiang, Yang
    Offer, Gregory
    Wang, Huizhi
    Wu, Billy
    JOURNAL OF POWER SOURCES, 2022, 527
  • [6] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [7] Layered amorphous silicon as negative electrodes in lithium-ion batteries
    Zhao, Leyi
    Dvorak, D. J.
    Obrovac, M. N.
    JOURNAL OF POWER SOURCES, 2016, 332 : 290 - 298
  • [8] Functionalization of Graphite Electrodes with Aryl Diazonium Salts for Lithium-Ion Batteries
    Bauer, Marina
    Pfeifer, Kristina
    Luo, Xianlin
    Radinger, Hannes
    Ehrenberg, Helmut
    Scheiba, Frieder
    CHEMELECTROCHEM, 2022, 9 (08)
  • [9] Optimising Hollow-Structured Silicon Nanoparticles for Lithium-Ion Batteries
    Yue, Chenghao
    Liu, Yao
    Guan, Shaoliang
    Fereydooni, Alireza
    Zeng, Yuexi
    Wei, Zhijie
    Wang, Yonggang
    Chao, Yimin
    MATERIALS, 2023, 16 (17)
  • [10] 3D silicon/graphite composite electrodes for high-energy lithium-ion batteries
    Zheng, Y.
    Seifert, H. J.
    Shi, H.
    Zhang, Y.
    Kuebel, C.
    Pfleging, W.
    ELECTROCHIMICA ACTA, 2019, 317 : 502 - 508