Existence criteria for fractional differential equations using the topological degree method

被引:7
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Alsaeed, Suliman [1 ,2 ]
Kaliraj, Kalimuthu [3 ]
Ravichandran, Chokkalingam [4 ]
Albalawi, Wedad [5 ]
Abdel-Aty, Abdel-Haleem [6 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
[2] Umm Al Qura Univ, Appl Sci Coll, Dept Math Sci, POB 715, Mecca 21955, Saudi Arabia
[3] Univ Madras, Ramanujan Inst Adv Study Math, Chennai 600005, India
[4] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore 641029, India
[5] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[6] Univ Bisha, Coll Sci, Dept Phys, POB 344, Bisha 61922, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
fractional calculus; integro-di ff erential equation; fixed point techniques; topological; degree method; BOUNDARY-VALUE-PROBLEMS; COUPLED SYSTEM; UNIQUENESS; INTEGRATION;
D O I
10.3934/math.20231117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.
引用
收藏
页码:21914 / 21928
页数:15
相关论文
共 50 条
  • [31] The Existence and Uniqueness of a Class of Fractional Differential Equations
    Bai, Zhanbing
    Sun, Sujing
    Chen, YangQuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] Study of an implicit type coupled system of fractional differential equations by means of topological degree theory
    Sarwar, Muhammad
    Ali, Anwar
    Zada, Mian Bahadur
    Ahmad, Hijaz
    Nofal, Taher A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [33] Study of an implicit type coupled system of fractional differential equations by means of topological degree theory
    Muhammad Sarwar
    Anwar Ali
    Mian Bahadur Zada
    Hijaz Ahmad
    Taher A. Nofal
    Advances in Difference Equations, 2021
  • [34] EXISTENCE RESULTS FOR RANDOM FRACTIONAL DIFFERENTIAL EQUATIONS
    Lupulescu, Vasile
    O'Regan, Donal
    Rahman, Ghaus ur
    OPUSCULA MATHEMATICA, 2014, 34 (04) : 813 - 825
  • [35] Existence Theory for ψ-Caputo Fractional Differential Equations
    Nadhir Bendrici
    Abdelatif Boutiara
    Malika Boumedien-Zidani
    Ukrainian Mathematical Journal, 2025, 76 (9) : 1457 - 1471
  • [36] On the Existence of Solutions for Impulsive Fractional Differential Equations
    Guan, Yongliang
    Zhao, Zengqin
    Lin, Xiuli
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [37] Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory
    Derbazi, Choukri
    Hammouche, Hadda
    AIMS MATHEMATICS, 2020, 5 (03): : 2694 - 2709
  • [38] Existence of Solution for a Katugampola Fractional Differential Equation Using Coincidence Degree Theory
    Srivastava, Satyam Narayan
    Pati, Smita
    Graef, John R.
    Domoshnitsky, Alexander
    Padhi, Seshadev
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (04)
  • [39] Application of Topological Degree Method for Solutions of Coupled Systems of Multipoints Boundary Value Problems of Fractional Order Hybrid Differential Equations
    Iqbal, Muhammad
    Li, Yongjin
    Shah, Kamal
    Khan, Rahmat Ali
    COMPLEXITY, 2017,
  • [40] TOPOLOGICAL DEGREE METHOD FOR FRACTIONAL LAPLACIAN SYSTEM
    Abada, Esma
    Lakhal, Hakim
    Maouni, Messaoud
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (02): : 10 - 19