WARPED PRODUCT PSEUDO-SLANT SUBMANIFOLDS OF A KENMOTSU MANIFOLD

被引:0
作者
Shuaib, Mohammad [1 ]
机构
[1] SRMS Coll Engn Technol & Res, Dept Basic Sci, Bareily, India
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2023年 / 38卷 / 02期
关键词
Kenmotsu manifolds; warped product manifolds; CR-SUBMANIFOLDS; GEOMETRY;
D O I
10.4134/CKMS.c210399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a pseudo-slant submanifold of a Kenmotsu manifold, we have worked out conditions in terms its canonical structure tensors, T and F, and its shape operator so that it reduces to a warped product submanifold.
引用
收藏
页码:547 / 560
页数:14
相关论文
共 17 条
[1]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[2]   Semi-slant submanifolds of a Sasakian manifold [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GEOMETRIAE DEDICATA, 1999, 78 (02) :183-199
[3]   Slant submanifolds in Sasakian manifolds [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :125-138
[4]  
Chen B. Y., 1990, Geometry of slant submanifolds
[5]   Geometry of warped product CR-submanifolds in Kaehler manifolds, II [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02) :103-119
[6]   Geometry of warped product CR-submanifolds in Kaehler manifolds [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (03) :177-195
[7]  
CHEN BY, 1981, J DIFFER GEOM, V16, P305
[8]  
Hiepko S., 1979, MATH ANN, V241, P209, DOI [10.1007/BF01421206, DOI 10.1007/BF01421206]
[9]   Warped product pointwise bi-slant submanifolds of kenmotsu manifolds [J].
Hui, Shyamal Kumar ;
Roy, Joydeb ;
Pal, Tanumoy .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
[10]   A class of warped product submanifolds of Kenmotsu manifolds [J].
Hui, Shyamal Kumar ;
Stankovic, Mica S. ;
Roy, Joydeb ;
Pal, Tanumoy .
TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (03) :760-777