Interplay between thermal and magnetic properties of polymer nanocomposites with superparamagnetic Fe3O4 nanoparticles

被引:4
|
作者
Rahman, Md Rezoanur [1 ]
Bake, Abdulhakim [1 ]
Ahmed, Al Jumlat [1 ]
Islam, Sheik Md Kazi Nazrul [1 ]
Wu, Liang [2 ,3 ]
Khakbaz, Hadis [2 ,3 ]
FitzGerald, Sara [4 ]
Chalifour, Artek [5 ,6 ]
Livesey, Karen L. [5 ,6 ,7 ]
Knott, Jonathan C. [1 ]
Innis, Peter C. [2 ,3 ]
Beirne, Stephen [2 ,3 ]
Cortie, David [1 ,8 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, North Wollongong, NSW 2519, Australia
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, North Wollongong, NSW 2519, Australia
[3] Univ Wollongong, Intelligent Polymer Res Inst, North Wollongong, NSW 2519, Australia
[4] Univ South Carolina, SmartState Ctr Expt Nanoscale Phys, Dept Phys & Astron, Columbia, SC 29208 USA
[5] Univ Colorado, Biofrontiers Ctr, Colorado Springs, CO 80918 USA
[6] Univ Colorado, Dept Phys, Colorado Springs, CO 80918 USA
[7] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
[8] Australian Nucl Sci & Technol Org, Menai, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Nanoparticles; Nanocomposite; Superparamagnetic iron oxide; Hyperthermia; Responsive plastics; Targeted heating; Thermally conductive composites; COMPOSITE NANOPARTICLES; HYPERTHERMIA; TOXICITY;
D O I
10.1016/j.jmmm.2023.170859
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic nanoparticles embedded in polymer matrices have excellent potential for multifunctional applications like magnetic remote heating, controlled drug delivery, hyperthermia, and thermally functionalized biomedical devices. A solvent-based processing method was developed to produce magnetic composites consisting of magnetite (Fe3O4) superparamagnetic nanoparticles embedded in a biomedical-grade polyurethane (Chrono-Flex(R) C). The particles had a log-normal size distribution spanning from 4-16 nm, with a mean-size of 9.5 +/- 2 nm. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy with elemental mapping were used to assess the phase purity, surface morphology, particle size, and homogeneity of the resulting nanocomposite. The magnetic properties of composites with 7-13 wt% of Fe3O4 were studied between 5 and 300 K using vibrating sample magnetometry. Room temperature magnetic attraction was observed, with a saturation magnetization of up to 5 emu/g and a low coercive field (Hc < 50 Oe), where the non-zero coercive field was attributed to a small fraction of larger particles that are ferromagnetic at room temperature. Field-cooled and zero-field-cooled magnetometry data were fitted to a numerical model to determine the super-paramagnetic mean blocking temperature (TB = 90 K) of the embedded magnetite particles, and an effective magnetic anisotropy of 6 x 105 erg/cm3. Using an AC magnetic field operating at 85 kHz, we demonstrate that remote heating of the base polyurethane material is greatly enhanced by compositing with Fe3O4 nanoparticles, leading to temperatures up to 45 degrees C within 18 min for composites submerged in water. This work demonstrates the fundamental principles of a custom-designed thermomagnetic polymer composite that could be used in applications, including medical and heat management.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging
    Liu Tianhui
    Chang Gang
    Cao Ruijun
    Meng Lingjie
    PROGRESS IN CHEMISTRY, 2015, 27 (05) : 601 - 613
  • [2] Synthesis of Fe3O4 nanoparticles and their magnetic properties
    Wei, Yan
    Han, Bing
    Hu, Xiaoyang
    Lin, Yuanhua
    Wang, Xinzhi
    Deng, Xuliang
    2011 CHINESE MATERIALS CONFERENCE, 2012, 27 : 632 - 637
  • [3] Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites
    Frounchi, Masoud
    Hadi, Mina
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2013, 32 (14) : 1044 - 1051
  • [4] Surface Decorated Fe3O4 Nanoparticles for Magnetic Hyperthermia
    Gawali, Santosh L.
    Barick, K. C.
    Hassan, P. A.
    61ST DAE-SOLID STATE PHYSICS SYMPOSIUM, 2017, 1832
  • [5] Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe3O4/alginate) nanocomposites
    Srivastava, Manish
    Singh, Jay
    Yashpal, Madhu
    Gupta, Dinesh Kumar
    Mishra, R. K.
    Tripathi, Shipra
    Ojha, Animesh K.
    CARBOHYDRATE POLYMERS, 2012, 89 (03) : 821 - 829
  • [6] Structure and Properties of Fe3O4/Polystyrene Nanocomposites
    Zhang Zhijie
    Tang Tao
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35 (11): : 2472 - 2480
  • [7] Mo•ssbauer spectroscopy of superparamagnetic Fe3O4 nanoparticles
    Hah, H. Y.
    Gray, S.
    Johnson, C. E.
    Johnson, J. A.
    Kolesnichenko, V
    Kucheryavy, P.
    Goloverda, G.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 539
  • [8] Preparation and Magnetic Property of KGM/Fe3O4 Nanocomposites
    Li, Junli
    Wang, Yu
    Zhou, Shaofeng
    Zhang, Qiaoxin
    Huang, Jin
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2011, 41 (06) : 635 - 638
  • [9] Sonochemical synthesis of magnetic properties of Fe3O4/CNT nanocomposites
    Yu, Rui
    Jiang, Chengfa
    Chu, Wei
    Zhao, Jianghao
    Sun, Wenjing
    Ran, Maofei
    INTEGRATED FERROELECTRICS, 2017, 179 (01) : 77 - 83
  • [10] Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine
    Jeun, Minhong
    Lee, Sanghoon
    Kang, Jae Kyeong
    Tomitaka, Asahi
    Kang, Keon Wook
    Kim, Young Il
    Takemura, Yasushi
    Chung, Kyung-Won
    Kwak, Jiyeon
    Bae, Seongtae
    APPLIED PHYSICS LETTERS, 2012, 100 (09)