Distilling Knowledge From Super-Resolution for Efficient Remote Sensing Salient Object Detection

被引:38
|
作者
Liu, Yanfeng [1 ,2 ]
Xiong, Zhitong [3 ]
Yuan, Yuan [2 ]
Wang, Qi [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[3] Tech Univ Munich TUM, Chair Data Sci Earth Observat, D-80333 Munich, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Task analysis; Superresolution; Remote sensing; Optical sensors; Optical imaging; Decoding; Convolution; Auxiliary super-resolution (SR); cross-task knowledge transfer; multitask learning (MTL); optical remote sensing image (RSI); salient object detection (SOD); NETWORK;
D O I
10.1109/TGRS.2023.3267271
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Current state-of-the-art remote sensing salient object detectors always require high-resolution spatial context to ensure excellent performance, which incurs enormous computation costs and hinders real-time efficiency. In this work, we propose a universal super-resolution-assisted learning (SRAL) framework to boost performance and accelerate the inference efficiency of existing approaches. To this end, we propose to reduce the spatial resolution of the input remote sensing images (RSIs), which is model-agnostic and can be applied to existing algorithms without extra computation cost. Specifically, a transposed saliency detection decoder (TSDD) is designed to upsample interim features progressively. On top of it, an auxiliary SR decoder (ASRD) is proposed to build a multitask learning (MTL) framework to investigate an efficient complementary paradigm of saliency detection and SR. Furthermore, a novel task-fusion guidance module (TFGM) is proposed to effectively distill domain knowledge from the SR auxiliary task to the salient object detection task in optical RSIs. The presented ASRD and TFGM can be omitted in the inference phase without any extra computational budget. Extensive experiments on three datasets show that the presented SRAL with 224 x 224 input is superior to more than 20 algorithms. Moreover, it can be successfully generalized to existing typical networks with significant accuracy improvements in a parameter-free manner. Codes and models are available at https://github.com/lyf0801/SRAL.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Efficient Swin Transformer for Remote Sensing Image Super-Resolution
    Kang, Xudong
    Duan, Puhong
    Li, Jier
    Li, Shutao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6367 - 6379
  • [2] Small object detection in remote sensing images based on super-resolution
    Fang Xiaolin
    Hu Fan
    Yang Ming
    Zhu Tongxin
    Bi Ran
    Zhang Zenghui
    Gao Zhiyuan
    PATTERN RECOGNITION LETTERS, 2022, 153 : 107 - 112
  • [3] Small-Object Detection in Remote Sensing Images With Super-Resolution Perception
    Liu, Jiahang
    Zhang, Jinlong
    Ni, Yue
    Chi, Weijian
    Qi, Zitong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15721 - 15734
  • [4] Small Object Detection in Remote Sensing Images Based on Super-Resolution with Auxiliary Generative Adversarial Networks
    Courtrai, Luc
    Minh-Tan Pham
    Lefevre, Sebastien
    REMOTE SENSING, 2020, 12 (19) : 1 - 19
  • [5] Adjacent Complementary Network for Salient Object Detection in Optical Remote Sensing Images
    Song, Dawei
    Dong, Yongsheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Gradient Prior Dilated Convolution Network for Remote Sensing Image Super-Resolution
    Liu, Ziyu
    Feng, Ruyi
    Wang, Lizhe
    Zeng, Tieyong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3945 - 3958
  • [7] Contextual Transformation Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Shunzhou
    Zhou, Tianfei
    Lu, Yao
    Di, Huijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] SMALL OBJECT DETECTION FROM REMOTE SENSING IMAGES WITH THE HELP OF OBJECT-FOCUSED SUPER-RESOLUTION USING WASSERSTEIN GANS
    Courtrai, Luc
    Pham, Minh-Tan
    Friguet, Chloe
    Lefevre, Sebastien
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 260 - 263
  • [9] Super-resolution on Remote Sensing Images
    Yang, Yuting
    Lam, Kin-Man
    Dong, Junyu
    Sun, Xin
    Jian, Muwei
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [10] Speed-Oriented Lightweight Salient Object Detection in Optical Remote Sensing Images
    Li, Zhaoyang
    Miao, Yinxiao
    Li, Xiongwei
    Li, Wenrui
    Cao, Jie
    Hao, Qun
    Li, Dongxing
    Sheng, Yunlong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63