A New Approach to Lidar and Camera Fusion for Autonomous Driving

被引:2
|
作者
Bae, Seunghwan [1 ]
Han, Dongun [1 ]
Park, Seongkeun [1 ]
机构
[1] Soonchunhyang Univ, Asan, South Korea
关键词
Autonomous Driving; Camera; LiDAR;
D O I
10.1109/ICAIIC57133.2023.10066963
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce an object detection model that combines a camera and a LiDAR sensor. In previous object detection studies have mainly focused on using one sensor, and mainly camera and LiDAR sensors were used. Research was mainly conducted in the direction of utilizing a single sensor, and typically cameras and LiDAR sensors were used. However, Camera and Li-DAR sensors have disadvantages such as being vulnerable to environmental changes or having sparse expressive power, so the method to improve them is needed for a stable cognitive system. In this paper, we propose the LiDAR Camera Fusion Network, a sensor fusion object detection model that uses the advantages of each sensor to improve the disadvantages of cameras and Li-DAR sensors. The sensor fusion object detector developed in this study has the feature of estimating the location of an object through LiDAR Clustering. Extraction speed is about 58 times faster than Selective search without prior learning, reducing the number of candidate regions from 2000 to 98, despite reducing the number of candidate regions, compared to existing methods, the ratio of the correct answer candidate areas among the total location candidate regions was 10 times larger. Due to the above characteristics, efficient learning and inference were possible compared to the existing method, and this model finally extracts the probability value of the object, the bounding box correction value, and the distance value from the object. Due to the characteristic of our research, we used KITTI data because LiDAR and image data were needed. As a result, we compare the results with object detection models that are often used in the object detection area.
引用
收藏
页码:751 / 753
页数:3
相关论文
共 50 条
  • [21] Optimized Deep Learning for LiDAR and Visual Odometry Fusion in Autonomous Driving
    Zhang, Dingnan
    Peng, Tao
    Loomis, John S.
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 29594 - 29604
  • [22] FS-Net: LiDAR-Camera Fusion With Matched Scale for 3D Object Detection in Autonomous Driving
    Zhang, Lei
    Li, Xu
    Tang, Kaichen
    Jiang, Yunzhe
    Yang, Liu
    Zhang, Yonggang
    Chen, Xianyi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (11) : 12154 - 12165
  • [23] Lidar sensors for autonomous driving
    Schleuning, David
    Droz, Pierre-yves
    HIGH-POWER DIODE LASER TECHNOLOGY XVIII, 2020, 11262
  • [24] Flash LiDAR for Autonomous Driving
    Lin, Chih-Ping
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [25] Towards Interpretable Camera and LiDAR Data Fusion for Autonomous Ground Vehicles Localisation
    Tibebu, Haileleol
    De-Silva, Varuna
    Artaud, Corentin
    Pina, Rafael
    Shi, Xiyu
    SENSORS, 2022, 22 (20)
  • [26] Object Detection and Segmentation using LiDAR-Camera Fusion for Autonomous Vehicle
    Senapati, Mrinal
    Anand, Bhaskar
    Thakur, Abhishek
    Verma, Harshal
    Rajalakshmi, P.
    2021 FIFTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2021), 2021, : 123 - 124
  • [27] CrossPrune: Cooperative pruning for camera-LiDAR fused perception models of autonomous driving
    Lu, Yantao
    Jiang, Bo
    Liu, Ning
    Li, Yilan
    Chen, Jinchao
    Zhang, Ying
    Wan, Zifu
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [28] Obstacle Detection for Autonomous Driving Vehicles With Multi-LiDAR Sensor Fusion
    Cao, Mingcong
    Wang, Junmin
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2020, 142 (02):
  • [29] Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion
    Liu, Ze
    Cai, Yingfeng
    Wang, Hai
    Chen, Long
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2021, 34 (01)
  • [30] Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion
    Ze Liu
    Yingfeng Cai
    Hai Wang
    Long Chen
    Chinese Journal of Mechanical Engineering, 2021, 34