Influence mechanism of the particle size on underwater active polarization imaging of reflective targets

被引:12
作者
Li, Haoxiang [1 ,2 ]
Zhu, Jingping [1 ,2 ]
Deng, Jinxin [1 ,2 ]
Guo, Fengqi [1 ,2 ]
Sun, Jian [3 ]
Zhang, Yunyao [4 ]
Hou, Xun [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Phys Elect & Devices, Minist Educ, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Shaanxi Key Lab Informat Photon Tech, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[4] Northwest Univ, Informat Sci & Technol, Xian 710127, Peoples R China
基金
中国国家自然科学基金;
关键词
TURBID MEDIUM; BACKSCATTERING; SCATTERING; STOKES; LIGHT;
D O I
10.1364/OE.483632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Underwater active polarization imaging is a promising imaging method, however, it is ineffective in some scenarios. In this work, the influence of the particle size from isotropic (Rayleigh regime) to forward-scattering on polarization imaging is investigated by both Monte Carlo simulation and quantitative experiments. The results show the non-monotonic law of imaging contrast with the particle size of scatterers. Furthermore, through polarization-tracking program, the polarization evolution of backscattered light and target diffuse light are detailed quantitatively with Poincare sphere. The findings indicate that the noise light's polarization and intensity scattering field change significantly with the particle size. Based on this, the influence mechanism of the particle size on underwater active polarization imaging of reflective targets is revealed for the first time. Moreover, the adapted principle of scatterer particle scale is also provided for different polarization imaging methods. (c) 2023 Optica Publishing Group
引用
收藏
页码:7212 / 7225
页数:14
相关论文
共 29 条
[1]  
Akarçay HG, 2014, APPL OPTICS, V53, P7576, DOI 10.1364/AO.53.007576
[2]   Monte Carlo modeling of polarized light propagation. Part II. Stokes versus Jones [J].
Akarcay, H. Guenhan ;
Hohmann, Ansgar ;
Kienle, Alwin ;
Frenz, Martin ;
Ricka, Jaro .
APPLIED OPTICS, 2014, 53 (31) :7586-7602
[3]   Enhancing underwater optical imaging by using a low-pass polarization filter [J].
Amer, Khadidja Ould ;
Elbouz, Marwa ;
Alfalou, Ayman ;
Brosseau, Christian ;
Hajjami, Jaouad .
OPTICS EXPRESS, 2019, 27 (02) :621-643
[4]   Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media [J].
Bartel, S ;
Hielscher, AH .
APPLIED OPTICS, 2000, 39 (10) :1580-1588
[5]   Computations temporal ghost imaging for long-distance underwater wireless optical communication [J].
Chen, Xinwei ;
Jin, Mengyin ;
Chen, Honglan ;
Wang, Yupeng ;
Qiu, Pengjiang ;
Cui, Xugao ;
Sun, Baoqing ;
Tian, Pengfei .
OPTICS LETTERS, 2021, 46 (08) :1938-1941
[6]   Exploring underwater target detection by imaging polarimetry and correlation techniques [J].
Dubreuil, M. ;
Delrot, P. ;
Leonard, I. ;
Alfalou, A. ;
Brosseau, C. ;
Dogariu, A. .
APPLIED OPTICS, 2013, 52 (05) :997-1005
[7]   Target detection in turbid medium using polarization-based range-gated technology [J].
Guan, Jinge ;
Zhu, Jingping .
OPTICS EXPRESS, 2013, 21 (12) :14152-14158
[8]   Underwater Image Enhancement Using a Multiscale Dense Generative Adversarial Network [J].
Guo, Yecai ;
Li, Hanyu ;
Zhuang, Peixian .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2020, 45 (03) :862-870
[9]   Active underwater descattering and image recovery [J].
Han, Pingli ;
Liu, Fei ;
Yang, Kui ;
Ma, Jinyu ;
Li, Jianjun ;
Shao, Xiaopeng .
APPLIED OPTICS, 2017, 56 (23) :6631-6638
[10]   A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces [J].
Hyde, M. W. ;
Schmidt, J. D. ;
Havrilla, M. J. .
OPTICS EXPRESS, 2009, 17 (24) :22138-22153