Data-driven preventive maintenance for a heterogeneous machine portfolio

被引:3
作者
Deprez, Laurens [1 ,6 ]
Antonio, Katrien [2 ,3 ]
Arts, Joachim [1 ]
Boute, Robert [2 ,4 ,5 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Logist & Supply Chain Management, Esch Sur Alzette, Luxembourg
[2] Katholieke Univ Leuven, Fac Econ & Business, Leuven, Belgium
[3] Univ Amsterdam, Fac Econ & Business, Amsterdam, Netherlands
[4] Vlerick Business Sch, Technol & Operat Management Area, Ghent, Belgium
[5] Flanders Make, VCCM, Lommel, Belgium
[6] 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
Preventive maintenance; Data pooling; Proportional hazards; Small data; SIMULATION; MODEL;
D O I
10.1016/j.orl.2023.01.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe a data-driven approach to optimize periodic maintenance policies for a heterogeneous portfolio with different machine profiles. When insufficient data are available per profile to assess failure intensities and costs accurately, we pool the data of all machine profiles and evaluate the effect of (observable) machine characteristics by calibrating appropriate statistical models. This reduces maintenance costs compared to a stratified approach that splits the data into subsets per profile and a uniform approach that treats all profiles the same.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [31] Derivation of heterogeneous material laws via data-driven principal component expansions
    Yang, Hang
    Guo, Xu
    Tang, Shan
    Liu, Wing Kam
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 365 - 379
  • [32] Data-driven fault diagnosis for heterogeneous chillers using domain adaptation techniques
    van de Sand, Ron
    Corasaniti, Sandra
    Reiff-Stephan, Joerg
    CONTROL ENGINEERING PRACTICE, 2021, 112
  • [33] Approach for Preventive Maintenance Planning of Machine Tools
    Pires, C. R.
    Lopes, I. S.
    Basto, L. P.
    TRANSDISCIPLINARY ENGINEERING METHODS FOR SOCIAL INNOVATION OF INDUSTRY 4.0, 2018, 7 : 966 - 975
  • [34] Data-driven Geodynamics
    Ismail-Zadeh, Alik
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2021, 97 (03) : 223 - 226
  • [35] The good, the bad, and the ugly: Data-driven load profile discord identification in a large building portfolio
    Park, June Young
    Wilson, Eric
    Parker, Andrew
    Nagy, Zoltan
    ENERGY AND BUILDINGS, 2020, 215
  • [36] Scheduling preventive maintenance on a single CNC machine
    Gurel, Sinan
    Akturk, M. Selim
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2008, 46 (24) : 6797 - 6821
  • [37] Data-driven optimal control of undulatory swimming
    Maroun, Karl
    Traore, Philippe
    Bergmann, Michel
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [38] Data-driven nested robust optimization for generation maintenance scheduling considering temporal correlation
    Yang, Xiao
    Li, Yuanzheng
    Zhao, Yong
    Yu, Yaowen
    Lian, Yicheng
    Hao, Guokai
    Jiang, Lin
    ENERGY, 2023, 278
  • [39] A data-driven machine learning approach for yaw control applications of wind farms
    Santoni, Christian
    Zhang, Zexia
    Sotiropoulos, Fotis
    Khosronejad, Ali
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2023, 13 (05)
  • [40] Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors
    Lu, Biao
    Chen, Zhen
    Zhao, Xufeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 212