Data-driven preventive maintenance for a heterogeneous machine portfolio

被引:2
|
作者
Deprez, Laurens [1 ,6 ]
Antonio, Katrien [2 ,3 ]
Arts, Joachim [1 ]
Boute, Robert [2 ,4 ,5 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Logist & Supply Chain Management, Esch Sur Alzette, Luxembourg
[2] Katholieke Univ Leuven, Fac Econ & Business, Leuven, Belgium
[3] Univ Amsterdam, Fac Econ & Business, Amsterdam, Netherlands
[4] Vlerick Business Sch, Technol & Operat Management Area, Ghent, Belgium
[5] Flanders Make, VCCM, Lommel, Belgium
[6] 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
Preventive maintenance; Data pooling; Proportional hazards; Small data; SIMULATION; MODEL;
D O I
10.1016/j.orl.2023.01.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe a data-driven approach to optimize periodic maintenance policies for a heterogeneous portfolio with different machine profiles. When insufficient data are available per profile to assess failure intensities and costs accurately, we pool the data of all machine profiles and evaluate the effect of (observable) machine characteristics by calibrating appropriate statistical models. This reduces maintenance costs compared to a stratified approach that splits the data into subsets per profile and a uniform approach that treats all profiles the same.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [1] Data-Driven Systematic Evaluation of Preventive Maintenance Performance
    Sigsgaard, Kristoffer, V
    Agergaard, Julie K.
    Mortensen, Niels-Henrik
    Soleymani, Iman
    67TH ANNUAL RELIABILITY & MAINTAINABILITY SYMPOSIUM (RAMS 2021), 2021,
  • [2] Prediction of Railway Track Condition for Preventive Maintenance by Using a Data-Driven Approach
    Vale, Cecilia
    Simoes, Maria Lurdes
    INFRASTRUCTURES, 2022, 7 (03)
  • [3] Data-Driven Predictive Maintenance
    Gama, Joao
    Ribeiro, Rita P.
    Veloso, Bruno
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (04) : 27 - 29
  • [4] Heterogeneous data-driven hybrid machine learning for tool condition prognosis
    Wang, Peng
    Liu, Ziye
    Gao, Robert X.
    Guo, Yuebin
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (01) : 455 - 458
  • [5] Data-Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts
    Li, Haobo
    Jiao, Yan
    Davey, Kenneth
    Qiao, Shi-Zhang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
  • [6] Optimizing preventive maintenance policy: A data-driven application for a light rail braking system
    Corman, Francesco
    Kraijema, Sander
    Godjevac, Milinko
    Lodewijks, Gabriel
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2017, 231 (05) : 534 - 545
  • [7] Data-driven portfolio management with quantile constraints
    Elçin Çetinkaya
    Aurélie Thiele
    OR Spectrum, 2015, 37 : 761 - 786
  • [8] Data-driven portfolio management with quantile constraints
    Cetinkaya, Elcin
    Thiele, Aurelie
    OR SPECTRUM, 2015, 37 (03) : 761 - 786
  • [9] Data-driven machine criticality assessment - maintenance decision support for increased productivity
    Gopalakrishnan, Maheshwaran
    Subramaniyan, Mukund
    Skoogh, Anders
    PRODUCTION PLANNING & CONTROL, 2022, 33 (01) : 1 - 19
  • [10] A data-driven predictive maintenance model for hospital HVAC system with machine learning
    Al-Aomar, Raid
    AlTal, Marah
    Abel, Jochen
    BUILDING RESEARCH AND INFORMATION, 2024, 52 (1-2): : 207 - 224