Self-supervised learning for single-pixel imaging via dual-domain constraints

被引:17
作者
Chang, Xuyang [1 ,2 ,3 ]
Wu, Ze [1 ,2 ,3 ]
LI, Daoyu [1 ,2 ,3 ]
Zhan, Xinrui [1 ,2 ,3 ]
Yan, Rong [1 ,2 ,3 ]
Bian, Liheng [1 ,2 ,3 ,4 ]
机构
[1] Beijing Inst Technol, MIIT Key Lab Complex Field Intelligent Sensing, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[4] Yangtze Delta Reg Acad, Beijing Inst Technol Jiaxing, Jiaxing 314019, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning - Learning systems - Pixels;
D O I
10.1364/OL.483886
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep-learning-augmented single-pixel imaging (SPI) provides an efficient solution for target compressive sensing. However, the conventional supervised strategy suffers from laborious training and poor generalization. In this Letter, we report a self-supervised learning method for SPI reconstruction. It introduces dual-domain constraints to integrate the SPI physics model into a neural network. Specifically, in addition to the traditional measurement constraint, an extra transformation constraint is employed to ensure target plane consistency. The transformation constraint uses the invariance of reversible transformation to impose an implicit prior, which avoids the non-uniqueness of measurement constraint. A series of experiments validate that the reported technique realizes self-supervised reconstruction in various complex scenes without any paired data, ground truth, or pre-trained prior. It can tackle the underdetermined degradation and noise, with similar to 3.7-dB improvement on the PSNR index compared with the existing method. (c) 2023 Optica Publishing Group
引用
收藏
页码:1566 / 1569
页数:4
相关论文
共 17 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]   Experimental comparison of single-pixel imaging algorithms [J].
Bian, Liheng ;
Suo, Jinli ;
Dai, Qionghai ;
Chen, Feng .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (01) :78-87
[3]   Large-scale phase retrieval [J].
Chang, Xuyang ;
Bian, Liheng ;
Zhang, Jun .
ELIGHT, 2021, 1 (01)
[4]  
Chen D., 2021, IEEE CVF INT C COMP, P4379
[5]  
Chen D., 2022, IEEE C COMP VIS PATT, P5647
[6]   Imaging With Equivariant Deep Learning: From unrolled network design to fully unsupervised learning [J].
Chen, Dongdong ;
Davies, Mike ;
Ehrhardt, Matthias J. ;
Schonlieb, Carola-Bibiane ;
Sherry, Ferdia ;
Tachella, Julian .
IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (01) :134-147
[7]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[8]   Principles and prospects for single-pixel imaging [J].
Edgar, Matthew P. ;
Gibson, Graham M. ;
Padgett, Miles J. .
NATURE PHOTONICS, 2019, 13 (01) :13-20
[9]   Blind Compressed Sensing [J].
Gleichman, Sivan ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (10) :6958-6975
[10]   Deep learning for real-time single-pixel video [J].
Higham, Catherine F. ;
Murray-Smith, Roderick ;
Padgett, Miles J. ;
Edgar, Matthew P. .
SCIENTIFIC REPORTS, 2018, 8