Complex actions and causality violations: applications to Lorentzian quantum cosmology

被引:19
作者
Asante, Seth K. [1 ,2 ]
Dittrich, Bianca [2 ,3 ]
Padua-Arguelles, Jose [2 ,4 ]
机构
[1] Friedrich Schiller Univ Jena, Theoret Phys Inst, Max Wien Pl 1, Jena D-07743, Germany
[2] Perimeter Inst, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[4] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lorentzian quantum gravity; quantum cosmology; real time path integral; causality; complex metrics; SIMPLICIAL MINISUPERSPACE; DIFFEOMORPHISM SYMMETRY; TOPOLOGY CHANGE; GRAVITY;
D O I
10.1088/1361-6382/accc01
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For the construction of the Lorentzian path integral for gravity one faces two main questions: firstly, what configurations to include, in particular whether to allow Lorentzian metrics that violate causality conditions. And secondly, how to evaluate a highly oscillatory path integral over unbounded domains. Relying on Picard-Lefschetz theory to address the second question for discrete Regge gravity, we will illustrate that it can also answer the first question. To this end we will define the Regge action for complexified variables and study its analytical continuation. Although there have been previously two different versions defined for the Lorentzian Regge action, we will show that the complex action is unique. More precisely, starting from the different definitions for the action one arrives at equivalent analytical extensions. The difference between the two Lorentzian versions is only realized along branch cuts which arise for a certain class of causality violating configurations. As an application we discuss the path integral describing a finite evolution step of the discretized de Sitter Universe. We will in particular consider an evolution from vanishing to finite scale factor, for which the path integral defines the no-boundary wave function.
引用
收藏
页数:45
相关论文
共 69 条
[1]  
Alexandru A, 2020, Arxiv, DOI arXiv:2007.05436
[2]   Nonperturbative Lorentzian path integral for gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (05) :924-927
[3]   Emergence of a 4D world from causal quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :131301-1
[4]   Non-perturbative Lorentzian quantum gravity, causality and topology change [J].
Ambjorn, J ;
Loll, R .
NUCLEAR PHYSICS B, 1998, 536 (1-2) :407-434
[5]   Nonperturbative quantum de Sitter universe [J].
Ambjorn, J. ;
Gorlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICAL REVIEW D, 2008, 78 (06)
[6]   Dynamically triangulating Lorentzian quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
NUCLEAR PHYSICS B, 2001, 610 (1-2) :347-382
[7]   Second-Order Phase Transition in Causal Dynamical Triangulations [J].
Ambjorn, Jan ;
Jordan, S. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (21)
[8]  
Asante SK, 2021, Arxiv, DOI arXiv:2112.03307
[9]   Effective spin foam models for Lorentzian quantum gravity [J].
Asante, Seth K. ;
Dittrich, Bianca ;
Padua-Arguelles, Jose .
CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (19)
[10]   Discrete gravity dynamics from effective spin foams [J].
Asante, Seth K. ;
Dittrich, Bianca ;
Haggard, Hal M. .
CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (14)