Multi-Scale and Multi-Stream Fusion Network for Pansharpening

被引:8
|
作者
Jian, Lihua [1 ]
Wu, Shaowu [2 ]
Chen, Lihui [3 ]
Vivone, Gemine [4 ,5 ]
Rayhana, Rakiba [6 ]
Zhang, Di [1 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[4] Inst Methodol Environm Anal CNR IMAA, Natl Res Council, I-85050 Tito, Italy
[5] NBFC Natl Biodivers Future Ctr, I-90133 Palermo, Italy
[6] Univ British Columbia, Sch Engn, Kelowna, BC V1V 1V7, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
pansharpening; multi-scale; multi-stream fusion; multi-stage reconstruction loss; image enhancement; image fusion; PAN-SHARPENING METHOD; REMOTE-SENSING IMAGES; SATELLITE IMAGES; REGRESSION; INJECTION; CONTRAST; QUALITY; MODEL; MS;
D O I
10.3390/rs15061666
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pansharpening refers to the use of a panchromatic image to improve the spatial resolution of a multi-spectral image while preserving spectral signatures. However, existing pansharpening methods are still unsatisfactory at balancing the trade-off between spatial enhancement and spectral fidelity. In this paper, a multi-scale and multi-stream fusion network (named MMFN) that leverages the multi-scale information of the source images is proposed. The proposed architecture is simple, yet effective, and can fully extract various spatial/spectral features at different levels. A multi-stage reconstruction loss was adopted to recover the pansharpened images in each multi-stream fusion block, which facilitates and stabilizes the training process. The qualitative and quantitative assessment on three real remote sensing datasets (i.e., QuickBird, Pleiades, and WorldView-2) demonstrates that the proposed approach outperforms state-of-the-art methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Multi-stream pyramid collaborative network for spectral unmixing
    Wang, Jie
    Ni, Mengying
    Wang, Zhixiang
    Yan, Yu
    Cheng, Xiang
    Xu, Jindong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (08) : 2674 - 2701
  • [22] Multi-Scale Visual Attention Deep Convolutional Neural Network for Multi-Focus Image Fusion
    Lai, Rui
    Li, Yongxue
    Guan, Juntao
    Xiong, Ai
    IEEE ACCESS, 2019, 7 : 114385 - 114399
  • [23] Single Image Dehazing by Multi-Scale Fusion
    Ancuti, Codruta Orniana
    Ancuti, Cosmin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3271 - 3282
  • [24] Pansharpening based on convolutional autoencoder and multi-scale guided filter
    Ahmad AL Smadi
    Shuyuan Yang
    Zhang Kai
    Atif Mehmood
    Min Wang
    Ala Alsanabani
    EURASIP Journal on Image and Video Processing, 2021
  • [25] A Multi-Scale Infrared and Visible Image Fusion Network Based on Context Perception
    Zhao, Huixuan
    Cheng, Jinyong
    Du, Rundong
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 395 - 400
  • [26] A Multi-Scale Fusion Convolutional Neural Network for Face Detection
    Chen, Qiaosong
    Meng, Xiaomin
    Li, Wen
    Fu, Xingyu
    Deng, Xin
    Wang, Jin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1013 - 1018
  • [27] Hourglass Dehazing Network Based on Multi-scale Parallel Fusion
    Mao, Yishu
    Song, Xingcehn
    Zhang, Xinman
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 395 - 400
  • [28] Image Denoising via Multi-Scale Gated Fusion Network
    Li, Shengyu
    Chen, Yaowu
    Jiang, Rongxin
    Tian, Xiang
    IEEE ACCESS, 2019, 7 : 49392 - 49402
  • [29] Multi-Scale Progressive Fusion Network for Low-Light Image Enhancement
    Zhang, Hongxin
    Ran, Teng
    Xiao, Wendong
    Lv, Kai
    Peng, Song
    Yuan, Liang
    Wang, Jingchuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [30] Multi-Scale Progressive Fusion Network for Single Image Deraining
    Jiang, Kui
    Wang, Zhongyuan
    Yi, Peng
    Chen, Chen
    Huang, Baojin
    Luo, Yimin
    Ma, Jiayi
    Jiang, Junjun
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 8343 - 8352