SF-YOLOv5: Improved YOLOv5 with swin transformer and fusion-concat method for multi-UAV detection

被引:4
作者
Ma, Jun [1 ]
Wang, Xiao [1 ]
Xu, Cuifeng [1 ]
Ling, Jing [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Elect Engn & Automat, 1 Jinji Rd, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-UAV; target detection; deep learning;
D O I
10.1177/00202940231164126
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When dealing with complex trajectories, and the interference by the unmanned aerial vehicle (UAV) itself or other flying objects, the traditional detecting methods based on YOLOv5 network mainly focus on one UAV and difficult to detect the multi-UAV effectively. In order to improve the detection method, a novel algorithm combined with swin transformer blocks and a fusion-concat method based on YOLOv5 network, so called SF-YOLOv5, is proposed. Furthermore, by using the distance intersection over union and non-maximum suppression (DIoU-NMS) as post-processing method, the proposed network can remove redundant detection boxes and improve the efficiency of the multi-UAV detection. Experimental results verify the feasibility and effectiveness of the proposed network, and show that the mAP trained on the two datasets used in experiments has been improved by 2.5 and 4.11% respectively. The proposed network can detect multi-UAV while ensuring accuracy and speed, and can be effectively used in the field of UAV monitoring or other types of multi-object detection applications.
引用
收藏
页码:1436 / 1445
页数:10
相关论文
共 50 条
  • [31] A lightweight method for apple-on-tree detection based on improved YOLOv5
    Li, Mei
    Zhang, Jiachuang
    Liu, Hubin
    Yuan, Yuhui
    Li, Junhui
    Zhao, Longlian
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (10) : 6713 - 6727
  • [32] An Efficient and Intelligent Detection Method for Fabric Defects based on Improved YOLOv5
    Lin, Guijuan
    Liu, Keyu
    Xia, Xuke
    Yan, Ruopeng
    SENSORS, 2023, 23 (01)
  • [33] An Improved Crucible Spatial Bubble Detection Based on YOLOv5 Fusion Target Tracking
    Zhao, Qian
    Zheng, Chao
    Ma, Wenyue
    SENSORS, 2022, 22 (17)
  • [34] SAB-YOLOv5: An Improved YOLOv5 Model for Permanent Magnetic Ferrite Magnet Rotor Detection
    Yu, Bo
    Li, Qi
    Jiao, Wenhua
    Zhang, Shiyang
    Zhu, Yongjun
    MATHEMATICS, 2024, 12 (07)
  • [35] Driver distracted driving detection based on improved YOLOv5
    Chen R.-X.
    Hu C.-C.
    Hu X.-L.
    Yang L.-X.
    Zhang J.
    He J.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (04): : 959 - 968
  • [36] An improved YOLOv5 model: Application to leaky eggs detection
    Luo, Yangfan
    Huang, Yuan
    Wang, Qian
    Yuan, Kai
    Zhao, Zuoxi
    Li, Yuanhong
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2023, 187
  • [37] Small gastric polyp detection based on the improved YOLOv5
    Wu, Linfei
    Liu, Jin
    Yang, Haima
    Huang, Bo
    Liu, Haishan
    Cheng, Shaowei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71773 - 71788
  • [38] Lightweight object detection algorithm for robots with improved YOLOv5
    Liu, Gang
    Hu, Yanxin
    Chen, Zhiyu
    Guo, Jianwei
    Ni, Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [39] Underwater Target Detection Algorithm Based on Improved YOLOv5
    Lei, Fei
    Tang, Feifei
    Li, Shuhan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (03)
  • [40] A Small Object Detection Algorithm Based on Improved YOLOv5
    Guo L.
    Wang Q.
    Xue W.
    Guo J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2022, 51 (02): : 251 - 258