Cell recognitive bioadhesive-based osteogenic barrier coating with localized delivery of bone morphogenetic protein-2 for accelerated guided bone regeneration

被引:5
作者
Jo, Yun Kee [1 ,2 ]
Choi, Bong-Hyuk [3 ]
Zhou, Cong [4 ]
Jun, Sang Ho [5 ,8 ]
Cha, Hyung Joon [6 ,7 ]
机构
[1] Kyungpook Natl Univ, Sch Convergence, Dept Biomed Convergence Sci & Technol, Daegu, South Korea
[2] Kyungpook Natl Univ, Cell & Matrix Res Inst, Daegu, South Korea
[3] Nat Gluetech Co Ltd, Seoul, South Korea
[4] Shandong Univ, Sch Stomatol, Jinan, Peoples R China
[5] Korea Univ, Dept Oral & Maxillofacial Surg, Anam Hosp, Seoul, South Korea
[6] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang, South Korea
[7] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 37673, South Korea
[8] Korea Univ, Dept Oral & Maxillofacial Surg, Anam Hosp, Seoul 02841, South Korea
关键词
barrier coating; bone morphogenetic protein-2; guided bone regeneration; mussel adhesive proteins; titanium mesh; BMP-2; DIFFERENTIATION; EXPRESSION; SUBSTRATE;
D O I
10.1002/btm2.10493
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Titanium mesh (Ti-mesh) for guided bone regeneration (GBR) approaches has been extensively considered to offer space maintenance in reconstructing the alveolar ridge within bone defects due to its superb mechanical properties and biocompatibility. However, soft tissue invasion across the pores of the Ti-mesh and intrinsically limited bioactivity of the titanium substrates often hinder satisfactory clinical outcomes in GBR treatments. Here, a cell recognitive osteogenic barrier coating was proposed using a bioengineered mussel adhesive protein (MAP) fused with Alg-Gly-Asp (RGD) peptide to achieve highly accelerated bone regeneration. The fusion bioadhesive MAP-RGD exhibited outstanding performance as a bioactive physical barrier that enabled effective cell occlusion and a prolonged, localized delivery of bone morphogenetic protein-2 (BMP-2). The MAP-RGD@BMP-2 coating promoted in vitro cellular behaviors and osteogenic commitments of mesenchymal stem cells (MSCs) via the synergistic crosstalk effects of the RGD peptide and BMP-2 in a surface-bound manner. The facile gluing of MAP-RGD@BMP-2 onto the Ti-mesh led to a distinguishable acceleration of the in vivo formation of new bone in terms of quantity and maturity in a rat calvarial defect. Hence, our protein-based cell recognitive osteogenic barrier coating can be an excellent therapeutic platform to improve the clinical predictability of GBR treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Inhibitory effect of bone morphogenetic protein-2 on the proliferation of giant cell tumor of bone stromal cells in vitro
    He, Baohua
    He, Guanping
    Zheng, Xiaofei
    Li, Lihua
    Li, Mei
    Xia, Hong
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2016, 11 (01) : 309 - 314
  • [22] Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum
    Mizuno, Daiki
    Agata, Hideki
    Furue, Hiroki
    Kimura, Ayuko
    Narita, Yuji
    Watanabe, Nobukazu
    Ishii, Yumiko
    Ueda, Minoru
    Tojo, Arinobu
    Kagami, Hideaki
    GROWTH FACTORS, 2010, 28 (01) : 34 - 43
  • [23] Bone marrow-derived heparan sulfate potentiates the osteogenic activity of bone morphogenetic protein-2 (BMP-2)
    Bramono, Diah S.
    Murali, Sadasivam
    Rai, Bina
    Ling, Ling
    Poh, Wei Theng
    Lim, Zophia Xuehui
    Stein, Gary S.
    Nurcombe, Victor
    van Wijnen, Andre J.
    Cool, Simon M.
    BONE, 2012, 50 (04) : 954 - 964
  • [24] Effect of Bone Morphogenetic Protein-2 on Tendon-Bone Integration in an In Vitro Cell Culture
    Struewer, Johannes
    Croenlein, Moritz
    Ziring, Ewgeni
    Schwarting, Tim
    Kratz, Marita
    Ruchholtz, Steffen
    Frangen, Thomas Manfred
    ORTHOPEDICS, 2013, 36 (02) : E200 - E206
  • [25] Regulating the bioactivity of non-glycosylated recombinant human bone morphogenetic protein-2 to enhance bone regeneration
    Yu, Yuanman
    Chen, Rui
    Chen, Xinye
    Wang, Jing
    Liu, Changsheng
    BIOACTIVE MATERIALS, 2024, 38 : 169 - 180
  • [26] Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration
    Cheng, Cheng-Hsin
    Lai, Yi-Hui
    Chen, Yi-Wen
    Yao, Chun-Hsu
    Chen, Kuo-Yu
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2019, 33 (09) : 1147 - 1156
  • [27] Non-surgical model for alveolar bone regeneration by bone morphogenetic protein-2/7 gene therapy
    Kawai, Mariko
    Kataoka, Yo-Hei
    Sonobe, Junya
    Yamamoto, Hiromitsu
    Inubushi, Masakazu
    Ishimoto, Takuya
    Nakano, Takayoshi
    Maruyama, Hiroki
    Miyazaki, Jun-Ichi
    Yamamoto, Toshio
    Bessho, Kazuhisa
    Ohura, Kiyoshi
    JOURNAL OF PERIODONTOLOGY, 2018, 89 (01) : 85 - 92
  • [28] Bone Regeneration by Controlled Release of Bone Morphogenetic Protein-2: A Rabbit Spinal Fusion Chamber Molecular Study
    Hu, Tao
    Naidu, Mathanapriya
    Yang, Zheng
    Lam, Wing Moon
    Kumarsing, Ramruttun Amit
    Ren, Xiafei
    Ng, Felly
    Wang, Ming
    Liu, Ling
    Tan, Kim Cheng
    Kwok, Kai Thong
    Goodman, Stuart B.
    Goh, James Cho-Hong
    Wong, Hee-Kit
    TISSUE ENGINEERING PART A, 2019, 25 (19-20) : 1356 - 1368
  • [29] Immunolocalization of bone morphogenetic protein 2 during the early healing events after guided bone regeneration
    De Marco, Andrea Carvalho
    Neves Jardini, Maria Aparecida
    Modolo, Filipe
    Nunes, Fabio Daumas
    Alves de Lima, Luiz Antonio Pugliesi
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2012, 113 (04): : 533 - 541
  • [30] Bone Tissue Engineering Strategies in Co-Delivery of Bone Morphogenetic Protein-2 and Biochemical Signaling Factors
    Kim, Sungjun
    Lee, Sangmin
    Kim, Kyobum
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 233 - 244