Cell recognitive bioadhesive-based osteogenic barrier coating with localized delivery of bone morphogenetic protein-2 for accelerated guided bone regeneration

被引:5
|
作者
Jo, Yun Kee [1 ,2 ]
Choi, Bong-Hyuk [3 ]
Zhou, Cong [4 ]
Jun, Sang Ho [5 ,8 ]
Cha, Hyung Joon [6 ,7 ]
机构
[1] Kyungpook Natl Univ, Sch Convergence, Dept Biomed Convergence Sci & Technol, Daegu, South Korea
[2] Kyungpook Natl Univ, Cell & Matrix Res Inst, Daegu, South Korea
[3] Nat Gluetech Co Ltd, Seoul, South Korea
[4] Shandong Univ, Sch Stomatol, Jinan, Peoples R China
[5] Korea Univ, Dept Oral & Maxillofacial Surg, Anam Hosp, Seoul, South Korea
[6] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang, South Korea
[7] Pohang Univ Sci & Technol, Dept Chem Engn, Pohang 37673, South Korea
[8] Korea Univ, Dept Oral & Maxillofacial Surg, Anam Hosp, Seoul 02841, South Korea
关键词
barrier coating; bone morphogenetic protein-2; guided bone regeneration; mussel adhesive proteins; titanium mesh; BMP-2; DIFFERENTIATION; EXPRESSION; SUBSTRATE;
D O I
10.1002/btm2.10493
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Titanium mesh (Ti-mesh) for guided bone regeneration (GBR) approaches has been extensively considered to offer space maintenance in reconstructing the alveolar ridge within bone defects due to its superb mechanical properties and biocompatibility. However, soft tissue invasion across the pores of the Ti-mesh and intrinsically limited bioactivity of the titanium substrates often hinder satisfactory clinical outcomes in GBR treatments. Here, a cell recognitive osteogenic barrier coating was proposed using a bioengineered mussel adhesive protein (MAP) fused with Alg-Gly-Asp (RGD) peptide to achieve highly accelerated bone regeneration. The fusion bioadhesive MAP-RGD exhibited outstanding performance as a bioactive physical barrier that enabled effective cell occlusion and a prolonged, localized delivery of bone morphogenetic protein-2 (BMP-2). The MAP-RGD@BMP-2 coating promoted in vitro cellular behaviors and osteogenic commitments of mesenchymal stem cells (MSCs) via the synergistic crosstalk effects of the RGD peptide and BMP-2 in a surface-bound manner. The facile gluing of MAP-RGD@BMP-2 onto the Ti-mesh led to a distinguishable acceleration of the in vivo formation of new bone in terms of quantity and maturity in a rat calvarial defect. Hence, our protein-based cell recognitive osteogenic barrier coating can be an excellent therapeutic platform to improve the clinical predictability of GBR treatment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration
    Park, YJ
    Kim, KH
    Lee, JY
    Ku, Y
    Lee, SJ
    Min, BM
    Chung, CP
    BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2006, 43 : 17 - 24
  • [2] Bone morphogenetic protein-2 for bone regeneration - Dose reduction through graphene oxide-based delivery
    La, Wan-Geun
    Jung, Moon-Joo
    Yoon, Jeong-Kee
    Bhang, Suk Ho
    Jang, Hyeon-Ki
    Lee, Tae-Jin
    Yoon, Hee-Hun
    Shin, Jung-Youn
    Kim, Byung-Soo
    CARBON, 2014, 78 : 428 - 438
  • [3] Effects of Bone Morphogenetic Protein-2 on Neovascularization During Large Bone Defect Regeneration
    Pearson, Hope B.
    Mason, Devon E.
    Kegelman, Christopher D.
    Zhao, Liming
    Dawahare, James H.
    Kacena, Melissa A.
    Boerckel, Joel D.
    TISSUE ENGINEERING PART A, 2019, 25 (23-24) : 1623 - 1634
  • [4] The Effect of NELL1 and Bone Morphogenetic Protein-2 on Calvarial Bone Regeneration
    Aghaloo, Tara
    Cowan, Catherine M.
    Zhang, Xinli
    Freymiller, Earl
    Soo, Chia
    Wu, Benjamin
    Ting, Kang
    Zhang, Zhiyuan
    JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2010, 68 (02) : 300 - 308
  • [5] Ex vivo bone morphogenetic protein-2 gene delivery using gingival fibroblasts promotes bone regeneration in rats
    Shin, Joong-Ho
    Kim, Kyoung-Hwa
    Kim, Su-Hwan
    Koo, Ki-Tae
    Kim, Tae-Il
    Seol, Yang-Jo
    Ku, Young
    Rhyu, In-Chul
    Chung, Chong-Pyoung
    Lee, Yong-Moo
    JOURNAL OF CLINICAL PERIODONTOLOGY, 2010, 37 (03) : 305 - 311
  • [6] Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration
    Sanchez-Casanova, Silvia
    Martin-Saavedra, Francisco M.
    Escudero-Duch, Clara
    Uceda, Maria I. Falguera
    Prieto, Martin
    Arruebo, Manuel
    Acebo, Paloma
    Fabiilli, Mario L.
    Franceschi, Renny T.
    Vilaboa, Nuria
    BIOMATERIALS, 2020, 241
  • [7] Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells
    Sun, Jian
    Li, Jieyun
    Li, Chichi
    Yu, Youcheng
    MOLECULAR MEDICINE REPORTS, 2015, 12 (03) : 4230 - 4237
  • [8] The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation
    Bhakta, Gajadhar
    Lim, Zophia X. H.
    Rai, Bina
    Lin, Tingxuan
    Hui, James H.
    Prestwich, Glenn D.
    van Wijnen, Andre J.
    Nurcombe, Victor
    Cool, Simon M.
    ACTA BIOMATERIALIA, 2013, 9 (11) : 9098 - 9106
  • [9] In vitro evaluation of a bone morphogenetic protein-2 nanometer hydroxyapatite collagen scaffold for bone regeneration
    Cai, Yue
    Tong, Shuang
    Zhang, Ran
    Zhu, Tong
    Wang, Xukai
    MOLECULAR MEDICINE REPORTS, 2018, 17 (04) : 5830 - 5836
  • [10] Pulsed Electromagnetic Fields Enhance Bone Morphogenetic Protein-2 Dependent-Bone Regeneration
    Yang, Hoon Joo
    Kim, Ri Youn
    Hwang, Soon Jung
    TISSUE ENGINEERING PART A, 2015, 21 (19-20) : 2629 - 2637