Hodge modules and singular hermitian metrics

被引:3
作者
Schnell, Christian [1 ]
Yang, Ruijie [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
Metric positivity; Ohwasa-Takegoshi extension theorems; Variation of Hodge structures; Hodge modules; ALGEBRAIC FIBER SPACES;
D O I
10.1007/s00209-022-03165-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study certain notions of metric positivity called "minimal extension property" for the lowest nonzero piece in the Hodge filtration of a Hodge module. Let X be a complex manifold and let M be a polarized pure Hodge module on X with strict support X. Let FpM be the smallest nonzero piece in the Hodge filtration. Assume that M is smooth outside a closed analytic subset Z and let j : X \ Z -> X be the open embedding. Let h be the smooth hermitian metric on FpM|X\Z induced by the polarization. We show that the canonical morphism of OX-modules FpM -> j*(FpM vertical bar X\Z) induces an isomorphism between FpM and the subsheaf of j*(FpM vertical bar X\Z) consisting of sections which are locally L-2 near Z with respect to h and the standard Lebesgue measure on X. In particular, h extends to a singular hermitian metric on FpM with minimal extension property.
引用
收藏
页数:20
相关论文
共 7 条
  • [1] Hodge modules and singular hermitian metrics
    Christian Schnell
    Ruijie Yang
    Mathematische Zeitschrift, 2023, 303
  • [2] SINGULAR HERMITIAN METRICS AND THE DECOMPOSITION THEOREM OF CATANESE, FUJITA, AND KAWAMATA
    Lombardi, Luigi
    Schnell, Christian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (01) : 137 - 146
  • [3] Singular Hermitian metrics and positivity of direct images of pluricanonical bundles
    Paun, Mihai
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 519 - 553
  • [4] Characterization of Pseudo-Effective Vector Bundles by Singular Hermitian Metrics
    Iwai, Masataka
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (03) : 579 - 599
  • [5] Hypergeometric Hodge modules
    Reichelt, Thomas
    Sevenheck, Christian
    ALGEBRAIC GEOMETRY, 2020, 7 (03): : 263 - 345
  • [6] Hodge modules and cobordism classes
    de Bobadilla, Javier Fernandez
    Pallares, Irma
    Saito, Morihiko
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2025, 27 (02) : 773 - 800
  • [7] Symmetric products of mixed Hodge modules
    Maxim, Laurentiu
    Saito, Morihiko
    Schuermann, Joerg
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (05): : 462 - 483