Framework for imbalanced fault diagnosis of rolling bearing using autoencoding generative adversarial learning

被引:9
|
作者
Rathore, Maan Singh [1 ]
Harsha, S. P. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Adv Mech Vibrat Lab, Roorkee 247667, Uttarakhand, India
关键词
Generative adversarial network; Stacked autoencoder; Deep convolutional neural network; Normalized cross-correlation; Receiver operating characteristic; NEURAL-NETWORK;
D O I
10.1007/s40430-022-03955-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a data augmentation model SAE-WGAN (stacked autoencoder with Wasserstein generative adversarial network), to reduce data imbalance condition of bearing fault diagnosis. To stabilize Wasserstein generative adversarial network training, both Wasserstein distance and informative noise vectors from stacked autoencoder are utilized to improve the quality of generated samples. For the quantitative evaluation of generated samples, both normalized cross-correlation and Kullback-Leibler divergence metrics are employed. Experimental validation and comparisons with state-of-art methods are presented to verify the effectiveness of the generation model. The results show an improvement of 6.58%, and 10.23% compared to Generative adversarial network, and Variational autoencoder, respectively. Furthermore, one-dimensional convolutional neural network is utilized for fault classification, and its performance is assessed using the receiver operating characteristic curve and area under curve values. The comparison results revealed the superior performance of the proposed generation model for bearing intelligent fault diagnosis under paucity of faulty data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Framework for imbalanced fault diagnosis of rolling bearing using autoencoding generative adversarial learning
    Maan Singh Rathore
    S. P. Harsha
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [2] Rolling bearing fault diagnosis using variational autoencoding generative adversarial networks with deep regret analysis
    Liu, Shaowei
    Jiang, Hongkai
    Wu, Zhenghong
    Li, Xingqiu
    MEASUREMENT, 2021, 168 (168)
  • [3] Imbalanced fault diagnosis of rolling bearing using a deep gradient improved generative adversarial network
    Liu, Shaowei
    Jiang, Hongkai
    Wu, Zhenghong
    Zhao, Ke
    Wang, Xin
    2022 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2022, : 127 - 132
  • [4] Imbalanced Fault Diagnosis of Rolling Bearing Based on Generative Adversarial Network: A Comparative Study
    Mao, Wentao
    Liu, Yamin
    Ding, Ling
    Li, Yuan
    IEEE ACCESS, 2019, 7 : 9515 - 9530
  • [5] A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
    Liu, Yunpeng
    Jiang, Hongkai
    Wang, Yanfeng
    Wu, Zhenghong
    Liu, Shaowei
    MEASUREMENT, 2022, 192
  • [6] Generative Adversarial Network Based Multi-class Imbalanced Fault Diagnosis of Rolling Bearing
    Liu, Qianjun
    Ma, Guijun
    Cheng, Cheng
    2019 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS 2019), 2019, : 318 - 324
  • [7] Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis
    Liu, Shaowei
    Jiang, Hongkai
    Wu, Zhenghong
    Li, Xingqiu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [8] Imbalanced data fault diagnosis of rolling bearings using enhanced relative generative adversarial network
    Luo, Jie
    Zhang, Yinong
    Yang, Fan
    Jing, Xin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (02) : 541 - 555
  • [9] Imbalanced data fault diagnosis of rolling bearings using enhanced relative generative adversarial network
    Jie Luo
    Yinong Zhang
    Fan Yang
    Xin Jing
    Journal of Mechanical Science and Technology, 2024, 38 : 541 - 555
  • [10] Intelligent Fault Detection Scheme for Rolling Bearing Based on Generative Adversarial Network and AutoEncoders Using Convolutional Neural Network
    Rathore, Maan Singh
    Harsha, S. P.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, : 8979 - 8991