An end-to-end deep learning approach for Raman spectroscopy classification

被引:3
|
作者
Zhou, Mengfei [1 ,2 ]
Hu, Yinchao [1 ]
Wang, Ruizhen [1 ]
Guo, Tian [1 ]
Yu, Qiqing [1 ]
Xia, Luyue [1 ]
Sun, Xiaofang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
deep residual networks; soft thresholding; spectral identification; visualized analysis; weight pruning; CONVOLUTIONAL NEURAL-NETWORKS; RECOGNITION;
D O I
10.1002/cem.3464
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Raman spectroscopy has numerous advantages as a means of analyzing materials and is widely used in petrochemical, material, food, biological, medical, and other fields. Its analysis process is fast, nondestructive, and requires no prepreparation. Meanwhile, the research on applying machine learning methods in Raman spectral recognition is becoming increasingly popular. In this study, an end-to-end deep learning method called deep residual shrinkage-VGG (DRS-VGG) is proposed, which is able to match Raman spectral features with model structure and reduces the reliance on feature engineering. The addition of identity shortcut and soft thresholding in the model eliminates redundant signals to achieve end-to-end spectral identification. The effectiveness of the proposed model is verified in three subsets of the RRUFF Raman database and bacterial Raman dataset from different perspectives without data augmentation, and the recognition accuracy is 97.84%, 92.81%, and 95.08%, respectively. Compared with other methods, the proposed DRS-VGG model achieved a significant improvement in speed or accuracy. The model's understanding of the spectra is visualized by the gradient-weighted class activation mapping (Grad-CAM), which explains the excellent classification performance. Additionally, the weight pruning technique is used to achieve model compression and improve recognition accuracy by shrinking the weights and fine-tuning the biases.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An End-to-End Deep Learning Architecture for Classification of Malware's Binary Content
    Gibert, Daniel
    Mateu, Carles
    Planes, Jordi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 383 - 391
  • [32] End-to-End Soccer Video Scene and Event Classification with Deep Transfer Learning
    Hong, Yuxi
    Ling, Chen
    Ye, Zuochang
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [33] Fast End-to-End Deep Learning Identity Document Detection, Classification and Cropping
    Chiron, Guillaume
    Arrestier, Florian
    Awal, Ahmad Montaser
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT IV, 2021, 12824 : 333 - 347
  • [34] End-to-End Deep Learning for Robotic Following
    Pierre, John M.
    ICMSCE 2018: PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MECHATRONICS SYSTEMS AND CONTROL ENGINEERING, 2015, : 77 - 85
  • [35] End-to-end deep learning with neuromorphic photonics
    Dabos, G.
    Mourgias-Alexandris, G.
    Totovic, A.
    Kirtas, M.
    Passalis, N.
    Tefas, A.
    Pleros, N.
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXV, 2021, 11689
  • [36] End-to-End Optimization of Deep Learning Applications
    Sohrabizadeh, Atefeh
    Wang, Jie
    Cong, Jason
    2020 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA '20), 2020, : 133 - 139
  • [37] Spline Filters For End-to-End Deep Learning
    Balestriero, Randall
    Cosentino, Romain
    Glotin, Herve
    Baraniuk, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [38] End-to-end Deep Learning of Optimization Heuristics
    Cummins, Chris
    Petoumenos, Pavlos
    Wang, Zheng
    Leather, Hugh
    2017 26TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2017, : 219 - 232
  • [39] An end-to-end deep generative approach with meta-learning optimization for zero-shot object classification
    Xu, Xiaofeng
    Bao, Xianglin
    Lu, Xingyu
    Zhang, Ruiheng
    Chen, Xinquan
    Lu, Guifu
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (02)
  • [40] End-to-end deep learning approach to mouse behavior classification from cortex-wide calcium imaging
    Ajioka, Takehiro
    Nakai, Nobuhiro
    Yamashita, Okito
    Takumi, Toru
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (03)