A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios

被引:2
作者
Belguerna, Abderrahmane [1 ]
Daoudi, Hamza [2 ]
Abdelhak, Khadidja [1 ]
Mechab, Boubaker [3 ]
Elmezouar, Zouaoui Chikr [4 ]
Alshahrani, Fatimah [5 ]
机构
[1] SA Univ Ctr, Sci Inst, Dept Math, POB 66, Naama 45000, Algeria
[2] Tahri Mohamed Univ, Coll Technol, Dept Elect Engn, POB 417,Al Qanadisa Rd, Bechar 08000, Algeria
[3] Univ Djillali Liabes Sidi Bel Abbes, Lab Stat & Stochast Proc, POB 89, Sidi Bel Abbes 22000, Algeria
[4] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[5] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
local polynomial method; conditional hazard estimation; missing at random; single index model; mean squared error; UNIFORM CONSISTENCY RATES; REGRESSION; DENSITY;
D O I
10.3390/math12030495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In unveiling the non-parametric estimation of the conditional hazard function through the local linear method, our study yields key insights into the method's behavior. We present rigorous analyses demonstrating the mean square convergence of the estimator, subject to specific conditions, within the realm of independent observations with missing data. Furthermore, our contributions extend to the derivation of expressions detailing both bias and variance of the estimator. Emphasizing the practical implications, we underscore the applicability of two distinct models discussed in this paper for single index estimation scenarios. These findings not only enhance our understanding of survival analysis methodologies but also provide practitioners with valuable tools for navigating the complexities of missing data in the estimation of conditional hazard functions. Ultimately, our results affirm the robustness of the local linear method in non-parametrically estimating the conditional hazard function, offering a nuanced perspective on its performance in the challenging context of independent observations with missing data.
引用
收藏
页数:20
相关论文
共 32 条
[1]  
[Anonymous], 2011, Recent advances in functional data analysis and related topics
[2]   Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data [J].
Attaoui, Said .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2014, 98 (03) :257-286
[3]  
Bachir Bouiadjra H., 2017, Int. J. Stat. Econ, V18, P45
[4]   Local linear regression for functional predictor and scalar response [J].
Baillo, Amparo ;
Grane, Aurea .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) :102-111
[5]   Locally modelled regression and functional data [J].
Barrientos-Marin, J. ;
Ferraty, F. ;
Vieu, P. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (05) :617-632
[6]  
Belabbaci O., 2015, Applications and Applied Mathematics: An International Journal (AAM), V10, P114
[7]  
Benchiha A., 2018, Int. J. Math. Stat, V19, P22
[8]   Local linear regression for functional data [J].
Berlinet, A. ;
Elamine, A. ;
Mas, A. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (05) :1047-1075
[9]   Distance-based local linear regression for functional predictors [J].
Boj, Eva ;
Delicado, Pedro ;
Fortiana, Josep .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) :429-437
[10]  
Bouchentouf A., 2014, Appl. Math, V41, P301, DOI [10.4064/am41-4-2, DOI 10.4064/AM41-4-2]