Identification of Protein Targets of S-Nitroso-Coenzyme A-Mediated S-Nitrosation Using Chemoproteomics

被引:1
作者
Falco, Julia A. [1 ,2 ,3 ]
Wynia-Smith, Sarah L. [4 ]
Mccoy, James [1 ]
Smith, Brian C. [4 ]
Weerapana, Eranthie [1 ]
机构
[1] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA
[2] Massachusetts Gen Hosp, Massachusetts Gen Res Inst, Boston, MA USA
[3] Harvard Univ, Harvard Med Sch, Dept Dermatol, Boston, MA USA
[4] Med Coll Wisconsin, Dept Biochem, Program Chem Biol, Milwaukee, WI 53226 USA
关键词
ATP-CITRATE LYASE; NITRIC-OXIDE; CRYSTAL-STRUCTURE; NITROSYLATION; METABOLISM; MECHANISMS; INHIBITION; HEALTH; PHOSPHOFRUCTOKINASE-1; TRANSNITROSATION;
D O I
10.1021/acschembio.3c00654
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.
引用
收藏
页码:193 / 207
页数:15
相关论文
共 39 条
  • [21] Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation
    Kalous, Kelsey S.
    Wynia-Smith, Sarah L.
    Olp, Michael D.
    Smith, Brian C.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (49) : 25398 - 25410
  • [22] Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein
    Weichsel, A
    Maes, EM
    Andersen, JF
    Valenzuela, JG
    Shokhireva, TK
    Walker, FA
    Montfort, WR
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) : 594 - 599
  • [23] S-nitrosation of protein phosphatase 1 mediates alcohol-induced ciliary dysfunction
    Price, Michael E.
    Case, Adam J.
    Pavlik, Jacqueline A.
    DeVasure, Jane M.
    Wyatt, Todd A.
    Zimmermann, Matthew C.
    Sisson, Joseph H.
    SCIENTIFIC REPORTS, 2018, 8
  • [24] S-Nitrosation of Arabidopsis thaliana Protein Tyrosine Phosphatase 1 Prevents Its Irreversible Oxidation by Hydrogen Peroxide
    Nicolas-Frances, Valerie
    Rossi, Jordan
    Rosnoblet, Claire
    Pichereaux, Carole
    Hichami, Siham
    Astier, Jeremy
    Klinguer, Agnes
    Wendehenne, David
    Besson-Bard, Angelique
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [25] Exposure of Rat Optic Nerves to Nitric Oxide Causes Protein S-Nitrosation and Myelin Decompaction
    Oscar A. Bizzozero
    Gisela DeJesus
    Tamara A. Howard
    Neurochemical Research, 2004, 29 : 1675 - 1685
  • [26] Exposure of rat optic nerves to nitric oxide causes protein S-nitrosation and myelin decompaction
    Bizzozero, OA
    DeJesus, G
    Howard, TA
    NEUROCHEMICAL RESEARCH, 2004, 29 (09) : 1675 - 1685
  • [27] Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia
    Li, Yazi
    Zhang, Yuying
    Wang, Lei
    Wang, Ping
    Xue, Yanhong
    Li, Xiaopeng
    Qiao, Xinhua
    Zhang, Xu
    Xu, Tao
    Liu, Guanghui
    Li, Peng
    Chen, Chang
    AUTOPHAGY, 2017, 13 (07) : 1145 - 1160
  • [28] Nitric oxide affects seed oil accumulation and fatty acid composition through protein S-nitrosation
    Liu, Jing
    Zhu, Xiao Yi
    Deng, Lin-Bin
    Liu, Hong-Fang
    Li, Jun
    Zhou, Xue-Rong
    Wang, Han-Zhong
    Hua, Wei
    JOURNAL OF EXPERIMENTAL BOTANY, 2021, 72 (02) : 385 - 397
  • [29] Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation
    Chouchani, Edward T.
    Hurd, Thomas R.
    Nadtochiy, Sergiy M.
    Brookes, Paul S.
    Fearnley, Ian M.
    Lilley, Kathryn S.
    Smith, Robin A. J.
    Murphy, Michael P.
    BIOCHEMICAL JOURNAL, 2010, 430 : 49 - 59
  • [30] Nitrite-mediated reduction of macrophage NADPH oxidase activity is dependent on xanthine oxidoreductase-derived nitric oxide but independent of S-nitrosation
    Zollbrecht, Christa
    Persson, A. Erik G.
    Lundberg, Jon O.
    Weitzberg, Eddie
    Carlstrom, Mattias
    REDOX BIOLOGY, 2016, 10 : 119 - 127