ImFusion: Boosting Two-Stage 3D Object Detection via Image Candidates

被引:5
|
作者
Tao, Manli [1 ,2 ]
Zhao, Chaoyang [1 ,3 ]
Wang, Jinqiao [1 ,2 ,3 ]
Tang, Ming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] ObjectEye Inc, Beijing 100000, Peoples R China
关键词
Three-dimensional displays; Proposals; Object detection; Feature extraction; Point cloud compression; Aggregates; Sun; 3D object detection; image candidates; pseudo 3D proposal; target missing; NETWORK;
D O I
10.1109/LSP.2023.3336569
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-modal fusion methods combine the advantages of both point clouds and RGB images to boost the performance of 3D object detection. Despite the significant progress, we find that existing two-stage multi-modal fusion methods suffer from the 3D proposal missing in the first stage and projected-style feature fusion mechanism. To solve these problems, we propose a two-stage multi-modal feature fusion network, which improves the recall rate of hard targets in the first stage of network with pseudo 3D proposals generated from image candidates. Then, considering the complementary information between similar image foreground features across multiple objects, we design a multi-modal cross-target fusion module to pay more attention to the foreground objects. It enables a 3D proposal can aggregate the semantic features of multiple image candidates belonging to the same category. Finally, these enhanced fused proposals are processed in the second stage to further boost the performance of 3D detector. Experimental results on SUN RGB-D and KITTI datasets show the effectiveness of our proposed method.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 50 条
  • [21] Two-Stage Object Detection Based on Deep Pruning for Remote Sensing Image
    Wang, Shengsheng
    Wang, Meng
    Zhao, Xin
    Liu, Dong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2018), PT I, 2018, 11061 : 137 - 147
  • [22] A Progressive Approach to Generic Object Detection: A Two-Stage Framework for Image Recognition
    Aamir, Muhammad
    Rahman, Ziaur
    Abro, Waheed Ahmed
    Bhatti, Uzair Aslam
    Dayo, Zaheer Ahmed
    Ishfaq, Muhammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 6351 - 6373
  • [23] AnchorPoint: Query Design for Transformer-Based 3D Object Detection and Tracking
    Liu, Hao
    Ma, Yanni
    Wang, Hanyun
    Zhang, Chaobo
    Guo, Yulan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 10988 - 11000
  • [24] STFNET: Sparse Temporal Fusion for 3D Object Detection in LiDAR Point Cloud
    Meng, Xin
    Zhou, Yuan
    Ma, Jun
    Jiang, Fangdi
    Qi, Yongze
    Wang, Cui
    Kim, Jonghyuk
    Wang, Shifeng
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 5866 - 5877
  • [25] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [26] Transformer3D-Det: Improving 3D Object Detection by Vote Refinement
    Zhao, Lichen
    Guo, Jinyang
    Xu, Dong
    Sheng, Lu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4735 - 4746
  • [27] S2CNet: Semantic and Structure Completion Network for 3D Object Detection
    Shi, Chao
    Zhang, Chongyang
    Luo, Yan
    Qian, Zefeng
    Zhao, Muming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 17134 - 17146
  • [28] Relation Graph Network for 3D Object Detection in Point Clouds
    Feng, Mingtao
    Gilani, Syed Zulqarnain
    Wang, Yaonan
    Zhang, Liang
    Mian, Ajmal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 92 - 107
  • [29] Multi-Modal 3D Object Detection by Box Matching
    Liu, Zhe
    Ye, Xiaoqing
    Zou, Zhikang
    He, Xinwei
    Tan, Xiao
    Ding, Errui
    Wang, Jingdong
    Bai, Xiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 19917 - 19928
  • [30] Multi-Source Features Fusion Single Stage 3D Object Detection With Transformer
    Tong, Guofeng
    Li, Zheng
    Peng, Hao
    Wang, Yaqi
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 2062 - 2069