Interatomic potentials for cubic zirconia and yttria-stabilized zirconia optimized by genetic algorithm

被引:3
|
作者
Fujii, Susumu [1 ,2 ]
Kuwabara, Akihide [2 ,3 ]
机构
[1] Osaka Univ, Div Mat & Mfg Sci, Suita, Osaka 5650871, Japan
[2] Japan Fine Ceram Ctr, Nanostruct Res Lab, Atsuta Ku, Nagoya, Aichi 4568587, Japan
[3] Univ Tokyo, Inst Engn Innovat, Next Generat Zirconia Social Cooperat Program, Bunkyo Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
Zirconia; Yttria-stabilized zirconia; Interatomic potential; Molecular dynamics; Ab initio calculation; Genetic algorithm; MOLECULAR-DYNAMICS SIMULATION; X-RAY-ABSORPTION; OXYGEN DIFFUSION; GRAIN-BOUNDARY; FUEL-CELL; TEMPERATURE; MICROSTRUCTURE; CONDUCTIVITY; TRANSITION; MECHANISM;
D O I
10.1016/j.commatsci.2023.112722
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Yttria stabilized zirconia (YSZ) is an important engineering ceramic oxide used for various applications, including solid electrolytes in solid oxide fuel cells due to its high ionic conductivity. Accurate and computationally inexpensive interatomic potentials for cubic ZrO2 and YSZ are required to accommodate the large number of defect configurations originating from high concentrations of Y and oxygen vacancies and to statistically understand their properties in realistic time. In this study, a genetic algorithm has been used to optimize empirical interatomic potential parameters for cubic ZrO2 and 10Y2O3 mol% YSZ using energies, forces acting on atoms, and stresses generated by ab initio calculations as training data. The optimized potentials reproduce the structural, mechanical, and thermal properties as well as the ionic conduction properties more accurately than previously reported empirical interatomic potentials. The developed potentials will be useful for a statistical characterization of YSZ properties, combined with more accurate ab initio calculations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Interaction of NiO with yttria-stabilized zirconia
    Kuzjukevics, A
    Linderoth, S
    SOLID STATE IONICS, 1997, 93 (3-4) : 255 - 261
  • [22] Protons in cubic yttria-stabilized zirconia: Binding sites and migration pathways
    Marinopoulos, A. G.
    SOLID STATE IONICS, 2018, 315 : 116 - 125
  • [23] Solvothermal synthesis of zirconia and yttria-stabilized zirconia nanocrystalline particles
    Wang X.M.
    Xiao P.
    J Mater Res, 2007, 1 (46-55): : 46 - 55
  • [24] Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres
    Leib, Elisabeth W.
    Vainio, Ulla
    Pasquarelli, Robert M.
    Kus, Jonas
    Czaschke, Christian
    Walter, Nils
    Janssen, Rolf
    Mueller, Martin
    Schreyer, Andreas
    Weller, Horst
    Vossmeyer, Tobias
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 448 : 582 - 592
  • [25] Induced p-type semiconductivity in yttria-stabilized zirconia
    Vendrell, Xavier
    West, Anthony R.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (10) : 6100 - 6106
  • [26] Mechanical properties of zirconia, doped and undoped yttria-stabilized cubic zirconia from first-principles
    Cousland, G. P.
    Cui, X. Y.
    Smith, A. E.
    Stampfl, A. P. J.
    Stampf, C. M.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2018, 122 : 51 - 71
  • [27] Transitional metal-doped 8 mol% yttria-stabilized zirconia electrolytes
    Zhang, T. S.
    Du, Z. H.
    Li, S.
    Kong, L. B.
    Song, X. C.
    Lu, J.
    Ma, J.
    SOLID STATE IONICS, 2009, 180 (23-25) : 1311 - 1317
  • [28] Size-dependent mechanical behaviors of cubic-phase yttria-stabilized zirconia
    Chen, Jiahui
    Ke, Jin
    Zhou, Jianli
    Zhong, Zheng
    Zhang, Jin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [29] Modelling the Interatomic Potential of Cubic Zirconia
    Muhammad, Ibrahim Dauda
    Awang, Mokhtar
    ADVANCED RESEARCH IN MATERIAL SCIENCE AND MECHANICAL ENGINEERING, PTS 1 AND 2, 2014, 446-447 : 151 - 157
  • [30] Impurities Effect on the Charge Mobility of Yttria-Stabilized Zirconia
    Abo-Zeid, Menna M.
    El-Deab, Mohamed S.
    AbdelKareem, A.
    El-Kady, Omayma A. M.
    Daher, A. M.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (04): : 3137 - 3146