Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries

被引:30
|
作者
Xie, Xiaoying [1 ]
Zhai, Zeyu [1 ]
Peng, Lishan [4 ]
Zhang, Jingbo [1 ]
Shang, Lu [2 ]
Zhang, Tierui [2 ,3 ]
机构
[1] Tianjin Normal Univ, Coll Chem, Tianjin Key Lab Struct & Performance Funct Mol, Tianjin 300387, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Ganjiang Innovat Acad, Key Lab Rare Earths, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Dual-sites single-atom catalysts; Bifunctional oxygen electrocatalysis; Zinc-air batteries; Coordination environment; ATOMICALLY DISPERSED FE; N-DOPED CARBON; REDUCTION REACTION; ACTIVE-SITES; METAL SITES; COORDINATION; NANOSHEETS; EVOLUTION; ELECTROREDUCTION; IDENTIFICATION;
D O I
10.1016/j.scib.2023.10.013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rechargeable zinc-air batteries (ZABs) with high energy density and low pollutant emissions are regarded as the promising energy storage and conversion devices. However, the sluggish kinetics and complex four-electron processes of oxygen reduction reaction and oxygen evolution reaction occurring at air electrodes in rechargeable ZABs pose significant challenges for their large-scale application. Carbonsupported single-atom catalysts (SACs) exhibit great potential in oxygen electrocatalysis, but needs to further improve their bifunctional electrocatalytic performance, which is highly related to the coordination environment of the active sites. As an extension of SACs, dual-sites SACs with wide combination of two active sites provide limitless opportunities to tailor coordination environment at the atomic level and improve catalytic performance. The review systematically summarizes recent achievements in the fabrication of dual-site SACs as bifunctional oxygen electrocatalysts, starting by illustrating the design fundament of the electrocatalysts according to their catalytic mechanisms. Subsequently, metal-nonmetalatom synergies and dual-metal-atom synergies to synthesize dual-sites SACs toward enhancing rechargeable ZABs performance are overviewed. Finally, the perspectives and challenges for the development of dual-sites SACs are proposed, shedding light on the rational design of efficient bifunctional oxygen electrocatalysts for practical rechargeable ZABs.(c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:2862 / 2875
页数:14
相关论文
共 50 条
  • [11] Engineering the Electronic Structure of Single-Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc-Air Batteries
    Li, Zhijun
    Ji, Siqi
    Xu, Chang
    Leng, Leipeng
    Liu, Hongxue
    Horton, J. Hugh
    Du, Lei
    Gao, Jincheng
    He, Cheng
    Qi, Xiaoying
    Xu, Qian
    Zhu, Junfa
    ADVANCED MATERIALS, 2023, 35 (09)
  • [12] Interface of Nickel Sulfides Optimizing Surface Reconstruction toward Efficient Bifunctional Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries
    Yan, Yu
    Che, Zhongxuan
    Song, Meirong
    Yu, Hongjie
    Huang, Chuanxue
    Zhou, Wei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (21) : 11278 - 11287
  • [13] Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable Zinc-air batteries
    Luo, Fang
    Zhu, Jianbing
    Ma, Shuangxiu
    Li, Min
    Xu, Ruizhi
    Zhang, Quan
    Yang, Zehui
    Qu, Konggang
    Cai, Weiwei
    Chen, Zhongwei
    ENERGY STORAGE MATERIALS, 2021, 35 : 723 - 730
  • [14] Recent advances in bifunctional catalysts for zinc-air batteries: Synthesis and potential mechanisms
    Zhao LinWei
    Gu TengTeng
    Liang ZiWei
    Liu Jun
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (10) : 2221 - 2245
  • [15] Electronic Metal Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries
    Wu, Mingjie
    Zhang, Gaixia
    Wang, Weichao
    Yang, Huaming
    Rawach, Diane
    Chen, Mengjun
    Sun, Shuhui
    SMALL METHODS, 2022, 6 (03)
  • [16] Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries
    Douka, Abdoulkader Ibro
    Yang, Huan
    Huang, Lei
    Zaman, Shahid
    Yue, Ting
    Guo, Wei
    You, Bo
    Xia, Bao Yu
    ECOMAT, 2021, 3 (01)
  • [17] An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries
    Ma, Yiou
    Fan, Haiyun
    Wu, Chao
    Zhang, Mingdao
    Yu, Jianghua
    Song, Li
    Li, Kuiran
    He, Jianping
    CARBON, 2021, 185 (185) : 526 - 535
  • [18] Regulating Electronic Structure of Single-Atom Catalysts toward Efficient Bifunctional Oxygen Electrocatalysis
    Ji, Jiapeng
    Wu, Lei
    Zhou, Shiyu
    Qiu, Tong
    Li, Zeheng
    Wang, Liguang
    Zhang, Liang
    Ma, Lu
    Ling, Min
    Zhou, Shaodong
    Liang, Chengdu
    SMALL METHODS, 2022, 6 (04)
  • [19] Recent Advances in Isolated Single-Atom Catalysts for Zinc Air Batteries: A Focus Review
    Zhang, Weimin
    Liu, Yuqing
    Zhang, Lipeng
    Chen, Jun
    NANOMATERIALS, 2019, 9 (10)
  • [20] Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc-Air Batteries
    Wang, Xu
    Peng, Luwei
    Xu, Nengneng
    Wu, Mingjie
    Wang, Yongxia
    Guo, Jianing
    Sun, Shuhui
    Qiao, Jinli
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) : 52836 - 52844