The genetic framework of primary ciliary dyskinesia assessed by soft computing analysis

被引:0
作者
Pifferi, Massimo [1 ,9 ]
Boner, Attilio L. [2 ]
Cangiotti, Angela [3 ]
Cudazzo, Alessandro [4 ]
Maj, Debora [1 ]
Gracci, Serena [1 ]
Michelucci, Angela [5 ]
Bertini, Veronica [6 ]
Piazza, Michele [2 ]
Valetto, Angelo [6 ]
Caligo, Maria Adelaide [5 ]
Peroni, Diego [1 ]
Bush, Andrew [7 ,8 ]
机构
[1] Univ Hosp Pisa, Dept Pediat, Pisa, Italy
[2] Verona Univ, Dept Surg Sci Dent Gynecol & Pediat, Pediat Unit, Med Sch, Verona, Italy
[3] Univ Hosp Ancona, Dept Expt & Clin Med, Electron Microscopy Unit, Ancona, Italy
[4] Univ Pisa, Dept Comp Sci, Pisa, Italy
[5] Univ Hosp Pisa, Dept Lab Med, Unit Mol Genet, Pisa, Italy
[6] Univ Hosp Pisa, Dept Lab Med, Sect Cytogenet, Pisa, Italy
[7] Imperial Coll, Dept Paediat Resp Med, London, England
[8] Royal Brompton Hosp, London, England
[9] Univ Hosp Pisa, Dept Pediat, Via Roma 67, I-56126 Pisa, Italy
关键词
artificial intelligence; ciliary motion analysis; ciliary ultrastructure; genetic abnormalities; primary ciliary dyskinesia; DIAGNOSIS;
D O I
10.1002/ppul.26842
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
BackgroundInternational guidelines disagree on how best to diagnose primary ciliary dyskinesia (PCD), not least because many tests rely on pattern recognition. We hypothesized that quantitative distribution of ciliary ultrastructural and motion abnormalities would detect most frequent PCD-causing groups of genes by soft computing analysis.MethodsArchived data on transmission electron microscopy and high-speed video analysis from 212 PCD patients were re-examined to quantitate distribution of ultrastructural (10 parameters) and functional ciliary features (4 beat pattern and 2 frequency parameters). The correlation between ultrastructural and motion features was evaluated by blinded clustering analysis of the first two principal components, obtained from ultrastructural variables for each patient. Soft computing was applied to ultrastructure to predict ciliary beat frequency (CBF) and motion patterns by a regression model. Another model classified the patients into the five most frequent PCD-causing gene groups, from their ultrastructure, CBF and beat patterns.ResultsThe patients were subdivided into six clusters with similar values to homologous ultrastructural phenotype, motion patterns, and CBF, except for clusters 1 and 4, attributable to normal ultrastructure. The regression model confirmed the ability to predict functional ciliary features from ultrastructural parameters. The genetic classification model identified most of the different groups of genes, starting from all quantitative parameters.ConclusionsApplying soft computing methodologies to PCD diagnostic tests optimizes their value by moving from pattern recognition to quantification. The approach may also be useful to evaluate atypical PCD, and novel genetic abnormalities of unclear disease-producing potential in the future.
引用
收藏
页码:891 / 898
页数:8
相关论文
共 50 条
  • [21] Clinical analysis of patients with primary ciliary dyskinesia in mainland China
    Cao, Yueqin
    Shao, Changzhou
    Song, Yuanlin
    Bai, Chunxue
    He, Lixian
    CLINICAL RESPIRATORY JOURNAL, 2016, 10 (06) : 765 - 771
  • [22] A Study on the Genetics of Primary Ciliary Dyskinesia
    Alsamri, Mohammed T.
    Alabdouli, Amnah
    Iram, Durdana
    Alkalbani, Alia M.
    Almarzooqi, Ayesha S.
    Souid, Abdul-Kader
    Vijayan, Ranjit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)
  • [23] Diagnostic Methods in Primary Ciliary Dyskinesia
    Lucas, Jane S.
    Paff', Tamara
    Goggin, Patricia
    Haarman, Eric
    PAEDIATRIC RESPIRATORY REVIEWS, 2016, 18 : 8 - 17
  • [24] Respiratory Aspects of Primary Ciliary Dyskinesia
    De Jesus-Rojas, Wilfredo
    Shapiro, Adam J.
    Shoemark, Amelia
    CLINICS IN CHEST MEDICINE, 2024, 45 (03) : 717 - 728
  • [25] Primary ciliary dyskinesia (Pcd) in Austria
    Lesic, Irena
    Maurer, Elisabeth
    Strippoli, Marie-Pierre F.
    Kuehni, Claudia E.
    Barbato, Angelo
    Frischer, Thomas
    WIENER KLINISCHE WOCHENSCHRIFT, 2009, 121 (19-20) : 616 - 622
  • [26] Clinical and genetic spectrum in 33 Egyptian families with suspected primary ciliary dyskinesia
    Fassad, Mahmoud R.
    Shoman, Walaa I.
    Morsy, Heba
    Patel, Mitali P.
    Radwan, Nesrine
    Jenkins, Lucy
    Cullup, Thomas
    Fouda, Eman
    Mitchison, Hannah M.
    Fasseeh, Nader
    CLINICAL GENETICS, 2020, 97 (03) : 509 - 515
  • [27] Implementation of a gene panel for the genetic diagnosis of primary ciliary dyskinesia
    Rovira Amigo, Sandra
    Baz Redon, Noelia
    Camats Tarruella, Nuria
    Fernandez Cancio, Monica
    Paramonov, Ida
    Castillo Corullon, Silvia
    Cols, Maria
    Caballero, Araceli
    Martin De Vicente, Carlos
    Asensio, Oscar
    Reula, Ana
    Escribano, Amparo
    Dasi, Francisco
    Armengot Carceller, Miguel
    Tizzano, Eduardo
    Moreno Galdo, Antonio
    EUROPEAN RESPIRATORY JOURNAL, 2020, 56
  • [28] Genetic Variants Supporting the Diagnosis of Primary Ciliary Dyskinesia in Japan
    Hijikata, Minako
    Morimoto, Kozo
    Ito, Masashi
    Wakabayashi, Keiko
    Miyabayashi, Akiko
    Yamada, Hiroyuki
    Keicho, Naoto
    CLINICAL GENETICS, 2025, 107 (02) : 219 - 223
  • [29] Is the sensitivity of primary ciliary dyskinesia detection by ciliary function analysis 100%?
    Boon, Mieke
    Jorissen, Mark
    Jaspers, Martine
    Cuppens, Harry
    De Boeck, Kris
    EUROPEAN RESPIRATORY JOURNAL, 2013, 42 (04) : 1159 - 1161
  • [30] Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome
    Leigh, Margaret W.
    Pittman, Jessica E.
    Carson, Johnny L.
    Ferkol, Thomas W.
    Dell, Sharon D.
    Davis, Stephanie D.
    Knowles, Michael R.
    Zariwala, Maimoona A.
    GENETICS IN MEDICINE, 2009, 11 (07) : 473 - 487