MD-UNet: a medical image segmentation network based on mixed depthwise convolution

被引:12
|
作者
Liu, Yun [1 ]
Yao, Shuanglong [1 ]
Wang, Xing [1 ]
Chen, Ji [1 ]
Li, Xiaole [1 ]
机构
[1] Linyi Univ, Sch Informat Sci & Engn, Linyi 276000, Peoples R China
关键词
Medical image segmentation; UNet; Depthwise convolution; MDAB;
D O I
10.1007/s11517-023-03005-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the process of cancer diagnosis and treatment, accurate extraction of the lesion area helps the doctor to judge the condition. Currently, medical image segmentation algorithms based on UNet have been verified to be able to play an important role in clinical diagnosis. However, these methods still have the following drawbacks in extracting the region of interest (ROI): (1) ignoring the intra-class variability of medical images. (2) Failure to obtain effective feature redundancy. To address these problems, a U-shaped medical image segmentation network based on a Mixed depthwise convolution residual module (MDRM), called MD-UNet, is proposed in this paper. In MD-UNet, the MDRM built with a Mixed depthwise convolution attention block (MDAB) captures both local and global dependencies in the image to mitigate the effects of intra-class differences. MDAB captures valid redundant features and further captures global features of the input data. At the same time, the lightweight MDAB senses changes in the receptive field and generates multiple feature mappings. Compared with UNeXt on the ISIC2018 dataset, the MD-UNet segmentation accuracy Dice and IoU are improved by 1.33% and 1.91%, respectively. The code is available at https://github.com/Cloud-Liu/MD-UNet.
引用
收藏
页码:1201 / 1212
页数:12
相关论文
共 50 条
  • [31] SACA-UNet:Medical Image Segmentation Network Based on Self-Attention and ASPP
    Fan, Gaojuan
    Wang, Jie
    Zhang, Chongsheng
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 317 - 322
  • [32] ConvUNeXt: An efficient convolution neural network for medical image segmentation
    Han, Zhimeng
    Jian, Muwei
    Wang, Gai-Ge
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [33] Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution
    Yimin Cai
    Yuqing Long
    Zhenggong Han
    Mingkun Liu
    Yuchen Zheng
    Wei Yang
    Liming Chen
    BMC Medical Informatics and Decision Making, 23
  • [34] Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution
    Cai, Yimin
    Long, Yuqing
    Han, Zhenggong
    Liu, Mingkun
    Zheng, Yuchen
    Yang, Wei
    Chen, Liming
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [35] A Novel Elastomeric UNet for Medical Image Segmentation
    Cai, Sijing
    Wu, Yi
    Chen, Guannan
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [36] Improved UNet with Attention for Medical Image Segmentation
    AL Qurri, Ahmed
    Almekkawy, Mohamed
    SENSORS, 2023, 23 (20)
  • [37] Hyperspectral Image Classification Network Based on 3D Octave Convolution and Multiscale Depthwise Separable Convolution
    Hong, Qingqing
    Zhong, Xinyi
    Chen, Weitong
    Zhang, Zhenghua
    Li, Bin
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (12)
  • [38] Real-time segmentation of weeds in cornfields based on depthwise separable convolution residual network
    Guo, Hao
    Wang, Shengsheng
    Lu, Yinan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 23 (04) : 307 - 318
  • [39] Lightweight decoder U-net crack segmentation network based on depthwise separable convolution
    Yu, Yongbo
    Zhang, Yage
    Yu, Junyang
    Yue, Jianwei
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [40] UNet Based on Multi-Object Segmentation and Convolution Neural Network for Object Recognition
    Almujally, Nouf Abdullah
    Chughtai, Bisma Riaz
    Al Mudawi, Naif
    Alazeb, Abdulwahab
    Algarni, Asaad
    Alzahrani, Hamdan A.
    Park, Jeongmin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1563 - 1580