Existence and exponential stability of solutions for a Balakrishnan-Taylor quasilinear wave equation with strong damping and localized nonlinear damping

被引:1
作者
Hajjej, Zayd [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Quasilinear wave equation; Balakrishnan-Taylor damping; strong damping; exponential stability; VISCOELASTIC EQUATION; GENERAL DECAY; VARIABLE-COEFFICIENTS; GLOBAL EXISTENCE; STABILIZATION;
D O I
10.1515/gmj-2023-2105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we study a Balakrishnan-Taylor quasilinear wave equation |z(t)|(alpha )z(tt )- Delta z(tt )- (xi(1 )+ xi(2)parallel to del(z)parallel to(2 )+ sigma(del z, del z(t)))Delta z - Delta z(t )+ beta(x)f(z(t)) + g(z) = 0 in a bounded domain of R-n with Dirichlet boundary conditions. By using Faedo-Galerkin method, we prove the existence of global weak solutions. By the help of the perturbed energy method, the exponential stability of solutions is also established.
引用
收藏
页码:615 / 626
页数:12
相关论文
共 23 条
[1]   EXISTENCE AND GENERAL DECAY OF BALAKRISHNAN-TAYLOR VISCOELASTIC EQUATION WITH NONLINEAR FRICTIONAL DAMPING AND LOGARITHMIC SOURCE TERM [J].
Al-gharabli, Mohammad ;
Balegh, Mohamed ;
Feng, Baowei ;
Hajjej, Zayd ;
Messaoudi, Salim A. .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, :1149-1173
[2]  
[Anonymous], 1998, Distrubutions Espace de Sobolev Application
[3]  
Balakrishnan A. V., 1989, P DAMP 89 FLIGHT DYN, pFDC1
[4]  
BASS RW, 1991, PROCEEDINGS OF THE 30TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, P1633, DOI 10.1109/CDC.1991.261683
[5]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[6]  
Clark H. R., 2022, ELECTRON J QUAL THEO, V2002
[7]  
Ferreira J., 1992, INT J MATH MATH SCI, V15, P543
[8]  
Ferreira J., 1999, 9th Int. Coll. on Diff. Eqs., P155
[9]   Long-Time Dynamics of Balakrishnan-Taylor Extensible Beams [J].
Gomes Tavares, E. H. ;
Jorge Silva, M. A. ;
Narciso, V. .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) :1157-1175
[10]   Stabilization for the Wave Equation with Variable Coefficients and Balakrishnan-Taylor Damping [J].
Ha, Tae Gab .
TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04) :807-817