Deep Learning-Based Small Target Detection for Satellite-Ground Free Space Optical Communications

被引:2
作者
Devkota, Nikesh [1 ]
Kim, Byung Wook [1 ]
机构
[1] Changwon Natl Univ, Dept Informat & Commun Engn, Chang Won 51140, South Korea
基金
新加坡国家研究基金会;
关键词
LEO satellite; deep learning; free space optical communication; small infrared target;
D O I
10.3390/electronics12224701
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS) connection. In this paper, we propose a deep neural network (DNN)-based small target detection method that detects the position of a LEO satellite in an infrared image, which can be used to determine the receiver alignment for establishing the LOS link. For the infrared small target detection task without excessive down-sampling, we design a target detection model using a modified ResNest-based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-path propagation necessary for robust feature extraction of small infrared targets. The custom FPN combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to detect small infrared targets and determine their location in infrared images. Experimental results using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm outperforms the conventional schemes and detects small targets with a true detection rate of 99.4% and 94.0%.
引用
收藏
页数:21
相关论文
共 37 条
[1]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[2]   A Spatial-Temporal Feature-Based Detection Framework for Infrared Dim Small Target [J].
Du, Jinming ;
Lu, Huanzhang ;
Zhang, Luping ;
Hu, Moufa ;
Chen, Sheng ;
Deng, Yingjie ;
Shen, Xinglin ;
Zhang, Yu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor [J].
Du, Jinming ;
Lu, Huanzhang ;
Hu, Moufa ;
Zhang, Luping ;
Shen, Xinglin .
IET IMAGE PROCESSING, 2021, 15 (01) :1-15
[4]   Infrared small target detection based on region proposal and CNN classifier [J].
Fan, Mingming ;
Tian, Shaoqing ;
Liu, Kai ;
Zhao, Jiaxin ;
Li, Yunsong .
SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) :1927-1936
[5]   C-RED 3: A SWIR camera for FSO applications [J].
Gach, J-L ;
Boutolleau, David ;
Brun, Cecile ;
Carmignani, Thomas ;
Clop, Fabien ;
Feautrier, Philippe ;
Lemarchand, Stephane ;
Stadler, Eric ;
Wanwanscappel, Yann .
FREE-SPACE LASER COMMUNICATIONS XXXII, 2020, 11272
[6]   Generalised-structure-tensor-based infrared small target detection [J].
Gao, Ch-Q. ;
Tian, J-W. ;
Wang, P. .
ELECTRONICS LETTERS, 2008, 44 (23) :1349-+
[7]   Infrared Patch-Image Model for Small Target Detection in a Single Image [J].
Gao, Chenqiang ;
Meng, Deyu ;
Yang, Yi ;
Wang, Yongtao ;
Zhou, Xiaofang ;
Hauptmann, Alexander G. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) :4996-5009
[8]   Overview of SWIR detectors, cameras, and applications [J].
Hansen, Marc P. ;
Malchow, Douglas S. .
THERMOSENSE XXX, 2008, 6939 :U82-U92
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Howard A., 2019, P IEEE CVF C COMP VI