SHARP BOUNDS ON THE HANKEL DETERMINANT OF THE INVERSE FUNCTIONS FOR CERTAIN ANALYTIC FUNCTIONS

被引:3
作者
Shi, Lei [1 ]
Arif, Muhammad [2 ]
Srivastava, H. M. [3 ,4 ,5 ,6 ]
Ishan, Muhammad [2 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455002, Henan, Peoples R China
[2] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Pakistan
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Azerbaijan Univ, Dept Math & Informat, Jeyhun Hajibeyli St Taichung,AZ1007, Baku 40402, Azerbaijan
[6] Int Telematic Univ Uninettuno, Sect Math, I-00186 Rome, Italy
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 03期
关键词
Univalent functions; inverse function; coefficient bounds; Hankel determinant; STARLIKE FUNCTIONS; COEFFICIENT INEQUALITY; 3RD KIND; 2ND;
D O I
10.7153/jmi-2023-17-73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In most cases, the problem of finding bounds for the inverse function is much more difficult than finding bounds for the function itself. Thus, there are relatively little sharp bounds of Hankel determinant on the inverse functions. In the present paper, we introduce a subclass of bounded turning function Rcar associated with a cardioid domain. The purpose of this article is to investigate certain coefficient related problems on the inverse functions for f E Rcar . The bounds of some initial coefficients, the Fekete-Szego type inequality and the estimation of Han-kel determinants of second and third order are obtained. All of these bounds are proved to be sharp.
引用
收藏
页码:1129 / 1143
页数:15
相关论文
共 38 条
  • [1] Toeplitz Determinants Associated with Ma-Minda Classes of Starlike and Convex Functions
    Ahuja, Om P.
    Khatter, Kanika
    Ravichandran, Vaithiyanathan
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2021 - 2027
  • [2] Ali R.M., 2003, B MALAYS MATH SCI SO, V26, P63
  • [3] Upper Bound of Second Hankel Determinant for Bi-BazilevicI† Functions
    Altinkaya, Sahsene
    Yalcin, Sibel
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4081 - 4090
  • [4] Babalola KO, 2010, INEQUAL THEORY APPL, P1
  • [5] Bieberbach L, 1916, SITZBER K PREUSS AKA, P940
  • [6] The Bounds of Some Determinants for Starlike Functions of Order Alpha
    Cho, N. E.
    Kowalczyk, B.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 523 - 535
  • [7] A PROOF OF THE BIEBERBACH CONJECTURE
    DEBRANGES, L
    [J]. ACTA MATHEMATICA, 1985, 154 (1-2) : 137 - 152
  • [8] Coefficient bounds and differential subordinations for analytic functions associated with starlike functions
    Ebadian, Ali
    Bulboaca, Teodor
    Cho, Nak Eun
    Adegani, Ebrahim Analouei
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [9] Gangania K, 2022, MEDITERR J MATH, V19, DOI 10.1007/s00009-022-02074-7
  • [10] Goodman A.W., 1983, UNIVALENT FUNCTIONS