Conditional generative models for learning stochastic processes

被引:1
作者
Certo, Salvatore [1 ]
Pham, Anh [2 ]
Robles, Nicolas [3 ]
Vlasic, Andrew [4 ]
机构
[1] Deloitte Consulting LLP, Charlotte, NC 28202 USA
[2] Deloitte Consulting LLP, Atlanta, GA USA
[3] IBM Quantum, IBM Res, Yorktown Hts, NY USA
[4] Deloitte Consulting LLP, Chicago, IL USA
关键词
Conditional quantum generative models; Quantum machine learning; Brownian motion;
D O I
10.1007/s42484-023-00129-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A framework to learn a multi-modal distribution is proposed, denoted as the conditional quantum generative adversarial network (C-qGAN). The neural network structure is strictly within a quantum circuit and, as a consequence, is shown to represent a more efficient state preparation procedure than current methods. This methodology has the potential to speed-up algorithms, such as the Monte Carlo analysis. In particular, after demonstrating the effectiveness of the network in the learning task, the technique is applied to price Asian option derivatives, providing the foundation for further research on other path-dependent options.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
Alghassi H, 2022, QUANTUM-AUSTRIA, V6
[2]  
Brassard G., 2002, Contemporary Mathematics, V305, P53, DOI 10.1090/conm/305/05215
[3]  
Caro MC, 2021, Arxiv, DOI [arXiv:2111.05292, 10.48550/ARXIV.2111.05292, DOI 10.48550/ARXIV.2111.05292]
[4]  
Chakrabarti S, 2019, ADV NEUR IN, V32
[5]   A Threshold for Quantum Advantage in Derivative Pricing [J].
Chakrabarti, Shouvanik ;
Krishnakumar, Rajiv ;
Mazzola, Guglielmo ;
Stamatopoulos, Nikitas ;
Woerner, Stefan ;
Zeng, William J. .
QUANTUM, 2021, 5
[6]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[7]  
Egger DJ, 2020, IEEE Transactions on Computers
[8]   Low depth algorithms for quantum amplitude estimation [J].
Giurgica-Tiron, Tudor ;
Kerenidis, Iordanis ;
Labib, Farrokh ;
Prakash, Anupam ;
Zeng, William .
QUANTUM, 2022, 6
[9]  
Gonzalez-Conde J, 2023, Bulletin of the American Physical Society
[10]   Iterative quantum amplitude estimation [J].
Grinko, Dmitry ;
Gacon, Julien ;
Zoufal, Christa ;
Woerner, Stefan .
NPJ QUANTUM INFORMATION, 2021, 7 (01)