Advances and applications of machine learning and deep learning in environmental ecology and health

被引:32
作者
Cui, Shixuan [1 ,2 ]
Gao, Yuchen [1 ]
Huang, Yizhou [2 ]
Shen, Lilai [1 ]
Zhao, Qiming [1 ]
Pan, Yaru [1 ]
Zhuang, Shulin [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Womens Hosp, Sch Med, Hangzhou 310006, Peoples R China
[3] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
基金
中国博士后科学基金;
关键词
Big data; Machine learning; Classification; Prediction; Ecotoxicity; Human health; ADVERSE OUTCOME PATHWAYS; CONTAMINATION EVENT DETECTION; SIMILARITY SEARCH; NEURAL-NETWORK; PREDICTION; MODEL; TOXICITY;
D O I
10.1016/j.envpol.2023.122358
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning (ML) and deep learning (DL) possess excellent advantages in data analysis (e.g., feature extraction, clustering, classification, regression, image recognition and prediction) and risk assessment and management in environmental ecology and health (EEH). Considering the rapid growth and increasing complexity of data in EEH, it is of significance to summarize recent advances and applications of ML and DL in EEH. This review summarized the basic processes and fundamental algorithms of the ML and DL modeling, and indicated the urgent needs of ML and DL in EEH. Recent research hotspots such as environmental ecology and restoration, environmental fate of new pollutants, chemical exposures and risks, chemical hazard identification and control were highlighted. Various applications of ML and DL in EEH demonstrate their versatility and technological revolution, and present some challenges. The perspective of ML and DL in EEH were further outlined to promote the innovative analysis and cultivation of the ML-driven research paradigm.
引用
收藏
页数:10
相关论文
共 110 条
[1]   Quantitative Analysis of X-Ray Spectral Data for a Mixture of Compounds Using Machine-Learning Algorithms [J].
Algasov, A. S. ;
Guda, S. A. ;
Guda, A. A. ;
Rusalev, Yu. V. ;
Soldatov, A. V. .
JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03) :495-501
[2]   4D-QSAR: Perspectives in Drug Design [J].
Andrade, Carolina H. ;
Pasqualoto, Kerly F. M. ;
Ferreira, Elizabeth I. ;
Hopfinger, Anton J. .
MOLECULES, 2010, 15 (05) :3281-3294
[3]   DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning [J].
Angermueller, Christof ;
Lee, Heather J. ;
Reik, Wolf ;
Stegle, Oliver .
GENOME BIOLOGY, 2017, 18
[4]   ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT [J].
Ankley, Gerald T. ;
Bennett, Richard S. ;
Erickson, Russell J. ;
Hoff, Dale J. ;
Hornung, Michael W. ;
Johnson, Rodney D. ;
Mount, David R. ;
Nichols, John W. ;
Russom, Christine L. ;
Schmieder, Patricia K. ;
Serrrano, Jose A. ;
Tietge, Joseph E. ;
Villeneuve, Daniel L. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) :730-741
[5]   Evidenced-Based Approaches to Support the Development of Endocrine-Mediated Adverse Outcome Pathways: Challenges and Opportunities [J].
Audouze, Karine ;
Zgheib, Elias ;
Abass, Khaled ;
Baig, Asma H. ;
Forner-Piquer, Isabel ;
Holbech, Henrik ;
Knapen, Dries ;
Leonards, Pim E. G. ;
Lupu, Diana I. ;
Palaniswamy, Saranya ;
Rautio, Arja ;
Sapounidou, Maria ;
Martin, Olwenn V. .
FRONTIERS IN TOXICOLOGY, 2021, 3
[6]   From wild harvest towards precision agriculture: Use of Ecological Niche Modelling to direct potential cultivation of wild medicinal plants in Crete [J].
Bariotakis, Michael ;
Georgescu, Luciana ;
Laina, Danae ;
Oikonomou, Ioanna ;
Ntagounakis, George ;
Koufaki, Margarita-Ioanna ;
Souma, Maria ;
Choreftakis, Michalis ;
Zormpa, Ourania Grigoriadou ;
Smykal, Petr ;
Sourvinos, George ;
Lionis, Christos ;
Castanas, Elias ;
Karousou, Regina ;
Pirintsos, Stergios A. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 694
[7]   Artificial Intelligence in Chemistry: Current Trends and Future Directions [J].
Baum, Zachary J. ;
Yu, Xiang ;
Ayala, Philippe Y. ;
Zhao, Yanan ;
Watkins, Steven P. ;
Zhou, Qiongqiong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (07) :3197-3212
[8]   Machine Learning in Weather Prediction and Climate Analyses-Applications and Perspectives [J].
Bochenek, Bogdan ;
Ustrnul, Zbigniew .
ATMOSPHERE, 2022, 13 (02)
[9]   STopTox: An in Silico Alternative to Animal Testing for Acute Systemic and Topical Toxicity [J].
Borba, Joyce V. B. ;
Alves, Vinicius M. ;
Braga, Rodolpho C. ;
Korn, Daniel R. ;
Overdahl, Kirsten ;
Silva, Arthur C. ;
Hall, Steven U. S. ;
Overdahl, Erik ;
Kleinstreuer, Nicole ;
Strickland, Judy ;
Allen, David ;
Andrade, Carolina Horta ;
Muratov, Eugene N. ;
Tropsha, Alexander .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2022, 130 (02)
[10]   Machine Learning in Nanoscience: Big Data at Small Scales [J].
Brown, Keith A. ;
Brittman, Sarah ;
Maccaferri, Nicolo ;
Jariwala, Deep ;
Ceano, Umberto .
NANO LETTERS, 2020, 20 (01) :2-10