CONTRASTIVE SELF-SUPERVISED LEARNING FOR SPATIO-TEMPORAL ANALYSIS OF LUNG ULTRASOUND VIDEOS

被引:1
|
作者
Chen, Li [1 ]
Rubin, Jonathan [1 ]
Ouyang, Jiahong [1 ]
Balaraju, Naveen [1 ]
Patil, Shubham [1 ]
Mehanian, Courosh [2 ]
Kulhare, Sourabh [2 ]
Millin, Rachel [2 ]
Gregory, Kenton W. [3 ]
Gregory, Cynthia R. [3 ]
Zhu, Meihua [3 ]
Kessler, David O. [4 ]
Malia, Laurie [4 ]
Dessie, Almaz [4 ]
Rabiner, Joni [4 ]
Coneybeare, Di [4 ]
Shopsin, Bo [5 ]
Hersh, Andrew [6 ]
Madar, Cristian [7 ]
Shupp, Jeffrey [8 ]
Johnson, Laura S. [8 ]
Avila, Jacob [9 ]
Dwyer, Kristin [10 ]
Weimersheimer, Peter [11 ]
Raju, Balasundar [1 ]
Kruecker, Jochen [1 ]
Chen, Alvin [1 ]
机构
[1] Philips Res North Amer, Cambridge, MA 02141 USA
[2] Global Hlth Labs, Bellevue, WA USA
[3] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[4] Columbia Univ, Med Ctr, New York, NY 10027 USA
[5] NYU, New York, NY 10003 USA
[6] Brooke Army Med Ctr, Ft Sam Houston, TX 78234 USA
[7] Tripler Army Med Ctr, Honolulu, HI 96859 USA
[8] MedStar Washington Hosp Ctr, Washington, DC USA
[9] Univ Kentucky, Lexington, KY 40506 USA
[10] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[11] Univ Vermont, Larner Coll Med, Burlington, VT 05405 USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Self-supervised learning; contrastive learning; spatio-temporal augmentation; lung ultrasound; DIAGNOSIS; ACCURACY;
D O I
10.1109/ISBI53787.2023.10230816
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised learning (SSL) methods have shown promise for medical imaging applications by learning meaningful visual representations, even when the amount of labeled data is limited. Here, we extend state-of-the-art contrastive learning SSL methods to 2D+time medical ultrasound video data by introducing a modified encoder and augmentation method capable of learning meaningful spatio-temporal representations, without requiring constraints on the input data. We evaluate our method on the challenging clinical task of identifying lung consolidations (an important pathological feature) in ultrasound videos. Using a multi-center dataset of over 27k lung ultrasound videos acquired from over 500 patients, we show that our method can significantly improve performance on downstream localization and classification of lung consolidation. Comparisons against baseline models trained without SSL show that the proposed methods are particularly advantageous when the size of labeled training data is limited (e.g., as little as 5% of the training set).
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Hierarchical Dynamic Spatio-Temporal Graph Convolutional Networks with Self-Supervised Learning for Traffic Flow Forecasting
    Wei, Siwei
    Song, Yanan
    Liu, Donghua
    Shen, Sichen
    Gao, Rong
    Wang, Chunzhi
    INVENTIONS, 2024, 9 (05)
  • [22] Self-Supervised Global Spatio-Temporal Interaction Pre-Training for Group Activity Recognition
    Du, Zexing
    Wang, Xue
    Wang, Qing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 5076 - 5088
  • [23] Slimmable Networks for Contrastive Self-supervised Learning
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1222 - 1237
  • [24] Dual Contrastive Learning for Spatio-temporal Representation
    Ding, Shuangrui
    Qian, Rui
    Xiong, Hongkai
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5649 - 5658
  • [25] Self-supervised contrastive learning for itinerary recommendation
    Chen, Lei
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [26] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180
  • [27] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191
  • [28] Pathological Image Contrastive Self-supervised Learning
    Qin, Wenkang
    Jiang, Shan
    Luo, Lin
    RESOURCE-EFFICIENT MEDICAL IMAGE ANALYSIS, REMIA 2022, 2022, 13543 : 85 - 94
  • [29] Temporal Contrastive Learning for Sensor-Based Human Activity Recognition: A Self-Supervised Approach
    Chen, Xiaobing
    Zhou, Xiangwei
    Sun, Mingxuan
    Wang, Hao
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1839 - 1850
  • [30] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370