CONTRASTIVE SELF-SUPERVISED LEARNING FOR SPATIO-TEMPORAL ANALYSIS OF LUNG ULTRASOUND VIDEOS

被引:1
|
作者
Chen, Li [1 ]
Rubin, Jonathan [1 ]
Ouyang, Jiahong [1 ]
Balaraju, Naveen [1 ]
Patil, Shubham [1 ]
Mehanian, Courosh [2 ]
Kulhare, Sourabh [2 ]
Millin, Rachel [2 ]
Gregory, Kenton W. [3 ]
Gregory, Cynthia R. [3 ]
Zhu, Meihua [3 ]
Kessler, David O. [4 ]
Malia, Laurie [4 ]
Dessie, Almaz [4 ]
Rabiner, Joni [4 ]
Coneybeare, Di [4 ]
Shopsin, Bo [5 ]
Hersh, Andrew [6 ]
Madar, Cristian [7 ]
Shupp, Jeffrey [8 ]
Johnson, Laura S. [8 ]
Avila, Jacob [9 ]
Dwyer, Kristin [10 ]
Weimersheimer, Peter [11 ]
Raju, Balasundar [1 ]
Kruecker, Jochen [1 ]
Chen, Alvin [1 ]
机构
[1] Philips Res North Amer, Cambridge, MA 02141 USA
[2] Global Hlth Labs, Bellevue, WA USA
[3] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[4] Columbia Univ, Med Ctr, New York, NY 10027 USA
[5] NYU, New York, NY 10003 USA
[6] Brooke Army Med Ctr, Ft Sam Houston, TX 78234 USA
[7] Tripler Army Med Ctr, Honolulu, HI 96859 USA
[8] MedStar Washington Hosp Ctr, Washington, DC USA
[9] Univ Kentucky, Lexington, KY 40506 USA
[10] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[11] Univ Vermont, Larner Coll Med, Burlington, VT 05405 USA
关键词
Self-supervised learning; contrastive learning; spatio-temporal augmentation; lung ultrasound; DIAGNOSIS; ACCURACY;
D O I
10.1109/ISBI53787.2023.10230816
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised learning (SSL) methods have shown promise for medical imaging applications by learning meaningful visual representations, even when the amount of labeled data is limited. Here, we extend state-of-the-art contrastive learning SSL methods to 2D+time medical ultrasound video data by introducing a modified encoder and augmentation method capable of learning meaningful spatio-temporal representations, without requiring constraints on the input data. We evaluate our method on the challenging clinical task of identifying lung consolidations (an important pathological feature) in ultrasound videos. Using a multi-center dataset of over 27k lung ultrasound videos acquired from over 500 patients, we show that our method can significantly improve performance on downstream localization and classification of lung consolidation. Comparisons against baseline models trained without SSL show that the proposed methods are particularly advantageous when the size of labeled training data is limited (e.g., as little as 5% of the training set).
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Contextualized Spatio-Temporal Contrastive Learning with Self-Supervision
    Yuan, Liangzhe
    Qian, Rui
    Cui, Yin
    Gong, Boqing
    Schroff, Florian
    Yang, Ming-Hsuan
    Adam, Hartwig
    Liu, Ting
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13957 - 13966
  • [22] Spatio-Temporal Meta Contrastive Learning
    Tang, Jiabin
    Xia, Lianghao
    Hu, Jie
    Huang, Chao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2412 - 2421
  • [23] Spatio-Temporal Catcher: a Self-Supervised Transformer for Deepfake Video Detection
    Li, Maosen
    Li, Xurong
    Yu, Kun
    Deng, Cheng
    Huang, Heng
    Mao, Feng
    Xue, Hui
    Li, Minghao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8707 - 8718
  • [24] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [25] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [26] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [27] TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning
    Liu, Yang
    Wang, Keze
    Liu, Lingbo
    Lan, Haoyuan
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1978 - 1993
  • [28] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)
  • [29] Point Contrastive Prediction with Semantic Clustering for Self-Supervised Learning on Point Cloud Videos
    Sheng, Xiaoxiao
    Shen, Zhiqiang
    Xiao, Gang
    Wang, Longguang
    Guo, Yulan
    Fan, Hehe
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16469 - 16478
  • [30] Hierarchical Dynamic Spatio-Temporal Graph Convolutional Networks with Self-Supervised Learning for Traffic Flow Forecasting
    Wei, Siwei
    Song, Yanan
    Liu, Donghua
    Shen, Sichen
    Gao, Rong
    Wang, Chunzhi
    INVENTIONS, 2024, 9 (05)