CONTRASTIVE SELF-SUPERVISED LEARNING FOR SPATIO-TEMPORAL ANALYSIS OF LUNG ULTRASOUND VIDEOS

被引:1
|
作者
Chen, Li [1 ]
Rubin, Jonathan [1 ]
Ouyang, Jiahong [1 ]
Balaraju, Naveen [1 ]
Patil, Shubham [1 ]
Mehanian, Courosh [2 ]
Kulhare, Sourabh [2 ]
Millin, Rachel [2 ]
Gregory, Kenton W. [3 ]
Gregory, Cynthia R. [3 ]
Zhu, Meihua [3 ]
Kessler, David O. [4 ]
Malia, Laurie [4 ]
Dessie, Almaz [4 ]
Rabiner, Joni [4 ]
Coneybeare, Di [4 ]
Shopsin, Bo [5 ]
Hersh, Andrew [6 ]
Madar, Cristian [7 ]
Shupp, Jeffrey [8 ]
Johnson, Laura S. [8 ]
Avila, Jacob [9 ]
Dwyer, Kristin [10 ]
Weimersheimer, Peter [11 ]
Raju, Balasundar [1 ]
Kruecker, Jochen [1 ]
Chen, Alvin [1 ]
机构
[1] Philips Res North Amer, Cambridge, MA 02141 USA
[2] Global Hlth Labs, Bellevue, WA USA
[3] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[4] Columbia Univ, Med Ctr, New York, NY 10027 USA
[5] NYU, New York, NY 10003 USA
[6] Brooke Army Med Ctr, Ft Sam Houston, TX 78234 USA
[7] Tripler Army Med Ctr, Honolulu, HI 96859 USA
[8] MedStar Washington Hosp Ctr, Washington, DC USA
[9] Univ Kentucky, Lexington, KY 40506 USA
[10] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[11] Univ Vermont, Larner Coll Med, Burlington, VT 05405 USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Self-supervised learning; contrastive learning; spatio-temporal augmentation; lung ultrasound; DIAGNOSIS; ACCURACY;
D O I
10.1109/ISBI53787.2023.10230816
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-supervised learning (SSL) methods have shown promise for medical imaging applications by learning meaningful visual representations, even when the amount of labeled data is limited. Here, we extend state-of-the-art contrastive learning SSL methods to 2D+time medical ultrasound video data by introducing a modified encoder and augmentation method capable of learning meaningful spatio-temporal representations, without requiring constraints on the input data. We evaluate our method on the challenging clinical task of identifying lung consolidations (an important pathological feature) in ultrasound videos. Using a multi-center dataset of over 27k lung ultrasound videos acquired from over 500 patients, we show that our method can significantly improve performance on downstream localization and classification of lung consolidation. Comparisons against baseline models trained without SSL show that the proposed methods are particularly advantageous when the size of labeled training data is limited (e.g., as little as 5% of the training set).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Self-Supervised Video Representation Learning by Uncovering Spatio-Temporal Statistics
    Wang, Jiangliu
    Jiao, Jianbo
    Bao, Linchao
    He, Shengfeng
    Liu, Wei
    Liu, Yun-hui
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3791 - 3806
  • [2] SELF-SUPERVISED SPATIO-TEMPORAL REPRESENTATION LEARNING OF SATELLITE IMAGE TIME SERIES
    Dumeur, Iris
    Valero, Silvia
    Inglada, Jordi
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 642 - 645
  • [3] Self-Supervised Spatio-Temporal Graph Learning for Point-of-Interest Recommendation
    Liu, Jiawei
    Gao, Haihan
    Shi, Chuan
    Cheng, Hongtao
    Xie, Qianlong
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [4] Spatio-Temporal Meta Contrastive Learning
    Tang, Jiabin
    Xia, Lianghao
    Hu, Jie
    Huang, Chao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2412 - 2421
  • [5] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [6] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [7] Attentive spatial-temporal contrastive learning for self-supervised video representation
    Yang, Xingming
    Xiong, Sixuan
    Wu, Kewei
    Shan, Dongfeng
    Xie, Zhao
    IMAGE AND VISION COMPUTING, 2023, 137
  • [8] Spatio-Temporal Catcher: a Self-Supervised Transformer for Deepfake Video Detection
    Li, Maosen
    Li, Xurong
    Yu, Kun
    Deng, Cheng
    Huang, Heng
    Mao, Feng
    Xue, Hui
    Li, Minghao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8707 - 8718
  • [9] TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning
    Liu, Yang
    Wang, Keze
    Liu, Lingbo
    Lan, Haoyuan
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1978 - 1993
  • [10] Self-Supervised Learning for Videos: A Survey
    Schiappa, Madeline C.
    Rawat, Yogesh S.
    Shah, Mubarak
    ACM COMPUTING SURVEYS, 2023, 55 (13S)