Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense

被引:1
作者
Wagner, Ellen R. [1 ,2 ,3 ]
Gasch, Audrey P. [1 ,2 ,3 ]
机构
[1] Univ Wisconsin, Lab Genet, Madison, WI 53706 USA
[2] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA
[3] Univ Wisconsin, Ctr Genom Sci Innovat, Madison, WI 53706 USA
关键词
xylose fermentation; signal transduction; yeast; environmental stress response; protein kinase A; PROTEIN-KINASE-A; MESSENGER-RNA STABILITY; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION FACTORS; REGULATORY SUBUNIT; ADENYLATE-CYCLASE; STRESS-RESPONSE; OSMOTIC-STRESS; SNF1; KINASE; CELL-CYCLE;
D O I
10.3390/jof9080786
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
引用
收藏
页数:22
相关论文
共 240 条
[1]   Time-Dependent Quantitative Multicomponent Control of the G1-S Network by the Stress-Activated Protein Kinase Hog1 upon Osmostress [J].
Adrover, Miquel Angel ;
Zi, Zhike ;
Duch, Alba ;
Schaber, Joerg ;
Gonzalez-Novo, Alberto ;
Jimenez, Javier ;
Nadal-Ribelles, Mariona ;
Clotet, Josep ;
Klipp, Edda ;
Posas, Francesc .
SCIENCE SIGNALING, 2011, 4 (192)
[2]   Predicting Cellular Growth from Gene Expression Signatures [J].
Airoldi, Edoardo M. ;
Huttenhower, Curtis ;
Gresham, David ;
Lu, Charles ;
Caudy, Amy A. ;
Dunham, Maitreya J. ;
Broach, James R. ;
Botstein, David ;
Troyanskaya, Olga G. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (01)
[3]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[4]   Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II [J].
Alepuz, PM ;
de Nadal, E ;
Zapater, M ;
Ammerer, G ;
Posas, F .
EMBO JOURNAL, 2003, 22 (10) :2433-2442
[5]   Regulation of cell cycle progression by Swe1p and Hog1a following hypertonic stress [J].
Alexander, MR ;
Tyers, M ;
Perret, M ;
Craig, BM ;
Fang, KS ;
Gustin, MC .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :53-62
[6]   Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].
Almeida, Jodo R. M. ;
Modig, Tobias ;
Petersson, Anneli ;
Hahn-Hagerdal, Barbel ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) :340-349
[7]  
Ashrafi K, 2000, GENE DEV, V14, P1872
[8]   Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges [J].
Azambuja, Suellen P. H. ;
Goldbeck, Rosana .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2020, 36 (03)
[9]   PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae [J].
Baccarini, Leticia ;
Martinez-Montanes, Fernando ;
Rossi, Silvia ;
Proft, Markus ;
Portela, Paula .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2015, 1849 (11) :1329-1339
[10]   ER stress signaling by regulated splicing:: IRE1/HAC1/XBP1 [J].
Back, SH ;
Schröder, M ;
Lee, K ;
Zhang, KZ ;
Kaufman, RJ .
METHODS, 2005, 35 (04) :395-416