Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field

被引:2
作者
Li, Leheng [1 ,3 ]
Lian, Qing [2 ]
Wang, Luozhou [1 ]
Ma, Ningning [3 ]
Chen, Ying-Cong [1 ,2 ]
机构
[1] HKUST GZ, Hong Kong, Peoples R China
[2] HKUST, Hong Kong, Peoples R China
[3] NIO Autonomous Driving, Shanghai, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
关键词
VISION;
D O I
10.1109/CVPR52729.2023.00040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work explores the use of 3D generative models to synthesize training data for 3D vision tasks. The key requirements of the generative models are that the generated data should be photorealistic to match the real-world scenarios, and the corresponding 3D attributes should be aligned with given sampling labels. However, we find that the recent NeRF-based 3D GANs hardly meet the above requirements due to their designed generation pipeline and the lack of explicit 3D supervision. In this work, we propose Lift3D, an inverted 2D-to-3D generation framework to achieve the data generation objectives. Lift3D has several merits compared to prior methods: (1) Unlike previous 3D GANs that the output resolution is fixed after training, Lift3D can generalize to any camera intrinsic with higher resolution and photorealistic output. (2) By lifting well-disentangled 2D GAN to 3D object NeRF, Lift3D provides explicit 3D information of generated objects, thus offering accurate 3D annotations for downstream tasks. We evaluate the effectiveness of our framework by augmenting autonomous driving datasets. Experimental results demonstrate that our data generation framework can effectively improve the performance of 3D object detectors. Code: len-li.github.io/lift3d-web
引用
收藏
页码:332 / 341
页数:10
相关论文
共 53 条
[1]   Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes [J].
Abu Alhaija, Hassan ;
Mustikovela, Siva Karthik ;
Mescheder, Lars ;
Geiger, Andreas ;
Rother, Carsten .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (09) :961-972
[2]  
Bojanowski P, 2019, Arxiv, DOI arXiv:1707.05776
[3]  
Cabon Y, 2020, Arxiv, DOI [arXiv:2001.10773, 10.48550/arXiv.2001.10773]
[4]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[5]   Efficient Geometry-aware 3D Generative Adversarial Networks [J].
Chan, Eric R. ;
Lin, Connor Z. ;
Chan, Matthew A. ;
Nagano, Koki ;
Pan, Boxiao ;
de Mello, Shalini ;
Gallo, Orazio ;
Guibas, Leonidas ;
Tremblay, Jonathan ;
Khamis, Sameh ;
Karras, Tero ;
Wetzstein, Gordon .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16102-16112
[6]   pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis [J].
Chan, Eric R. ;
Monteiro, Marco ;
Kellnhofer, Petr ;
Wu, Jiajun ;
Wetzstein, Gordon .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :5795-5805
[7]   Monocular 3D Object Detection for Autonomous Driving [J].
Chen, Xiaozhi ;
Kundu, Kaustav ;
Zhang, Ziyu ;
Ma, Huimin ;
Fidler, Sanja ;
Urtasun, Raquel .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2147-2156
[8]  
Chen XZ, 2015, ADV NEUR IN, V28
[9]   GeoSim: Realistic Video Simulation via Geometry-Aware Composition for Self-Driving [J].
Chen, Yun ;
Rong, Frieda ;
Duggal, Shivam ;
Wang, Shenlong ;
Yan, Xinchen ;
Manivasagam, Sivabalan ;
Xue, Shangjie ;
Yumer, Ersin ;
Urtasun, Raquel .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7226-7236
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848