Graphene/SiC composite porous electrodes for high-performance micro-supercapacitors

被引:3
|
作者
Zhang, Song [1 ,6 ]
Zhang, Ming [2 ]
Wang, Chongjie [2 ]
Lu, Pengjian [2 ,4 ]
Guo, Bingjian [2 ,5 ]
Li, Bao-Wen [2 ]
Tu, Rong [1 ,6 ]
Xu, Qingfang [1 ,3 ]
Wang, Chuanbin [1 ]
Zhang, Lianmeng [1 ,6 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, 122 Luoshi Rd, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan, Peoples R China
[4] Wuhan Tuocai Technol Co Ltd, 147 Luoshi Rd, Wuhan 430070, Peoples R China
[5] Zhejiang MTCN Technol Co Ltd, 59, Luhui Rd, Taihu St, Huzhou 311103, Zhejiang, Peoples R China
[6] Chem & Chem Engn Guangdong Lab, Chaozhou Branch, Chaozhou 521000, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; SiC composite; Porous films; Laser chemical vapor deposition; Specific surface area; Micro-supercapacitor; SILICON-CARBIDE NANOWIRES; ENERGY; STABILITY; GROWTH;
D O I
10.1016/j.jpowsour.2023.233463
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Micro-supercapacitor (MSC) electrodes prepared by chemical vapor deposition (CVD) possess high potential as on-chip integrated micro-power sources for future microdevices. In this study, porous graphene/SiC composite films are grown using laser CVD. A double-layer specific capacitance up to 219.3 mF/cm2 is achieved at 10 mV/s, which is 26 times higher than those of the electrodes prepared by CVD with the same energy storage mechanism reported in literatures. After 20000 charge-discharge cycles at room temperature (20 degrees C) and variable temperatures (0-60 degrees C), the electrode exhibits robust cycling stability with 99.9% and 109.6% capacitance retention, respectively. Subsequently, it is revealed that the abundance of graphene on the SiC porous skeleton plays a key role in promoting the capacitance enhancement. The strong structure of SiC as well as the strong adhesion between graphene and SiC guarantee the excellent cycling stability. Evidently, the preparation of graphene/SiC porous composite films as MSC electrodes is a highly promising route for fabricating high-performance and reliable on-chip power sources for future miniaturized devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors
    Li, Xiaoxiao
    Liu, Qiao
    Chen, Shanliang
    Li, Weijun
    Liang, Zhao
    Fang, Zhi
    Yang, Weiyou
    Tian, Yun
    Yang, Ya
    ENERGY STORAGE MATERIALS, 2020, 27 : 261 - 269
  • [2] Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors
    Chen, Huqiang
    Chen, Songbo
    Zhang, Yujin
    Ren, Hao
    Hu, Xinjun
    Bai, Yongxiao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 56319 - 56329
  • [3] Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors
    Li, Qing
    Cheng, Hengyang
    Wu, Xingjiang
    Wang, Cai-Feng
    Wu, Guan
    Chen, Su
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) : 14112 - 14119
  • [4] Laser direct writing of carbon/Au composite electrodes for high performance micro-supercapacitors
    Cai, Jinguang
    Watanabe, Akira
    Lv, Chao
    LASER-BASED MICRO- AND NANOPROCESSING XI, 2017, 10092
  • [5] 3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes
    Lang Liu
    JunYong Lu
    XinLin Long
    Ren Zhou
    YingQuan Liu
    YiTing Wu
    KangWei Yan
    Science China Technological Sciences, 2021, 64 : 1065 - 1073
  • [6] 3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes
    Liu, Lang
    Lu, JunYong
    Long, XinLin
    Zhou, Ren
    Liu, YingQuan
    Wu, YiTing
    Yan, KangWei
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (05) : 1065 - 1073
  • [7] High-Performance Flexible Micro-Supercapacitors Printed on Textiles for Powering Wearable Electronics
    Guo, Hua
    Jiang, Zhen
    Ren, Dayong
    Li, Shengxia
    Wang, Jialin
    Cai, Xiaobing
    Zhang, Dongxing
    Guo, Qiuquan
    Xiao, Junfeng
    Yang, Jun
    CHEMELECTROCHEM, 2021, 8 (09) : 1574 - 1579
  • [8] Inkjet printing of silver/graphene flexible composite electrodes for high-performance supercapacitors
    Peng, Qingyan
    Tan, Xiaodong
    Stempien, Zbigniew
    Venkataraman, Mohanapriya
    Militky, Jiri
    Kejzlar, Pavel
    Korzeniewska, Ewa
    MATERIALS CHARACTERIZATION, 2024, 218
  • [9] Facile Preparation of High-Performance Free-Standing Micro-Supercapacitors by Optimizing Oxygen Groups on Graphene
    Chen, Shiyu
    Sun, Hui
    Chen, Yuewen
    Fang, Qihan
    Huang, Ziyuan
    Liu, Yuan
    Chen, Jie
    Chen, Mingming
    Cao, Dawei
    SMALL, 2024, 20 (49)
  • [10] Facile fabrication of 2D porous carbon nano-flake electrodes for high-performance flexible on-chip micro-supercapacitors
    Ma, Huaxin
    Guo, Bin
    Wu, Wenyu
    Zhang, Zhao
    Zhang, Ruijun
    JOURNAL OF ENERGY STORAGE, 2022, 55