Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems

被引:4
作者
El-Dessoky, M. M. [1 ,2 ]
Almohammadi, Nehad [1 ,3 ]
Alzahrani, Ebraheem [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Umm Al Qura Univ, Jamoum Univ Coll, Mecca, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
关键词
adaptive control; modified function projective synchronization; error dynamical system; Liu hyperchaotic; Chen hyperchaotic; CHAOTIC SYSTEMS; GENERALIZED SYNCHRONIZATION; FEEDBACK STABILIZATION;
D O I
10.3934/math.20231201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider an adaptive control method, which is simpler and generalized to obtain some conditions on the parameters for hyperchaotic models determined by using a Lyapunov direct method. Further, an adaptive controller for synchronization is designed by using Lyapunov functions by which the deriving system and the response system can realize adaptive modified function projective synchronization up to scaling matrix. Numerical simulation of each system is discussed in detail with graphical results. The graphical results are presented in detail in order to validate the theoretical results. These results in this article generalize and improve the corresponding results of the recent works.
引用
收藏
页码:23621 / 23634
页数:14
相关论文
共 54 条
[1]   On the analysis of stability, bifurcation, chaos and chaos control of Kopel map [J].
Agiza, HN .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1909-1916
[2]   Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method [J].
Agrawal, S. K. ;
Das, S. .
JOURNAL OF PROCESS CONTROL, 2014, 24 (05) :517-530
[3]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[4]   Modified projective synchronization of chaotic systems with disturbances via active sliding mode control [J].
Cai, Na ;
Jing, Yuanwei ;
Zhang, Siying .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1613-1620
[5]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[6]   A new hyper-chaotic system and its synchronization [J].
Chen, Cheng-Hsien ;
Sheu, Long-Jye ;
Chen, Hsien-Keng ;
Chen, Juhn-Horng ;
Wang, Hung-Chih ;
Chao, Yi-Chi ;
Lin, Yu-Kai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2088-2096
[7]   On some controllability conditions for chaotic dynamics control [J].
Chen, GR .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1461-1470
[8]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[9]   Control of a fractional-order economical system via sliding mode [J].
Dadras, Sara ;
Momeni, Hamid Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (12) :2434-2442
[10]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410