Current state and prospects of artificial intelligence in allergy

被引:20
作者
van Breugel, Merlijn [1 ,2 ,3 ]
Fehrmann, Rudolf S. N. [4 ]
Buegel, Marnix [3 ]
Rezwan, Faisal I. [5 ,6 ]
Holloway, John W. [5 ,7 ,8 ]
Nawijn, Martijn C. [2 ,9 ]
Fontanella, Sara [10 ,11 ]
Custovic, Adnan [10 ,11 ]
Koppelman, Gerard H. [1 ,2 ,12 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Beatrix Childrens Hosp, Dept Pediat Pulmonol & Pediat Allergol, Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Groningen Res Inst Asthma & COPD GRIAC, Groningen, Netherlands
[3] MIcompany, Amsterdam, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Med Oncol, Groningen, Netherlands
[5] Univ Southampton, Fac Med, Human Dev & Hlth, Southampton, England
[6] Aberystwyth Univ, Dept Comp Sci, Aberystwyth, Wales
[7] Univ Hosp Southampton NHS Fdn Trust, Natl Inst Hlth, Southampton, England
[8] Univ Hosp Southampton NHS Fdn Trust, Care Res Southampton Biomed Res Ctr, Southampton, England
[9] Univ Groningen, Univ Med Ctr Groningen, Dept Pathol & Med Biol, Groningen, Netherlands
[10] Imperial Coll London, Natl Heart & Lung Inst, London, England
[11] Natl Inst Hlth Care Res Imperial Biomed Res Ctr BR, London, England
[12] Univ Med Ctr Groningen, Beatrix Childrens Hosp, Dept Pediat Pulmonol & Pediat Allergol, POB 30-001, NL-9700 RB Groningen, Netherlands
关键词
artificial intelligence; deep learning; diagnosis; machine learning; precision medicine; HEALTH-CARE; DIABETIC-RETINOPATHY; ASTHMA ASCERTAINMENT; LEARNING ALGORITHMS; MEDICAL DEVICES; PHENOTYPES; WHEEZE; PREDICTION; CHILDREN; LUNG;
D O I
10.1111/all.15849
中图分类号
R392 [医学免疫学];
学科分类号
100102 ;
摘要
The field of medicine is witnessing an exponential growth of interest in artificial intelligence (AI), which enables new research questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy. This narrative review provides a fundamental understanding of the core concepts of AI and critically discusses its limitations and open challenges, such as data availability and bias, along with potential directions to surmount them. We provide a conceptual framework to structure AI applications within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on guidelines for good AI practice to guide readers in applying it effectively and safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in allergy.
引用
收藏
页码:2623 / 2643
页数:21
相关论文
共 230 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Project IDentif.AI: Harnessing Artificial Intelligence to Rapidly Optimize Combination Therapy Development for Infectious Disease Intervention [J].
Abdulla, Aynur ;
Wang, Boqian ;
Qian, Feng ;
Kee, Theodore ;
Blasiak, Agata ;
Ong, Yoong Hun ;
Hooi, Lissa ;
Parekh, Falgunee ;
Soriano, Rafael ;
Olinger, Gene G. ;
Keppo, Jussi ;
Hardesty, Chris L. ;
Chow, Edward K. ;
Ho, Dean ;
Ding, Xianting .
ADVANCED THERAPEUTICS, 2020, 3 (07)
[3]   Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine [J].
Ahmed, Zeeshan ;
Mohamed, Khalid ;
Zeeshan, Saman ;
Dong, Xinqi .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
[4]  
AI and NLP, AUT IS HELP HEALTHC
[5]   Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity [J].
Alag, Ayush .
PLOS ONE, 2019, 14 (06)
[6]   Predicting Pulmonary Function From the Analysis of Voice: A Machine Learning Approach [J].
Alam, Md. Zahangir ;
Simonetti, Albino ;
Brillantino, Raffaele ;
Tayler, Nick ;
Grainge, Chris ;
Siribaddana, Pandula ;
Nouraei, S. A. Reza ;
Batchelor, James ;
Rahman, M. Sohel ;
Mancuzo, Eliane V. ;
Holloway, John W. ;
Holloway, Judith A. ;
Rezwan, Faisal I. .
FRONTIERS IN DIGITAL HEALTH, 2022, 4
[7]   Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review [J].
Albahri, A. S. ;
Hamid, Rula A. ;
Alwan, Jwan K. ;
Al-qays, Z. T. ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Albahri, A. O. S. ;
AlAmoodi, A. H. ;
Khlaf, Jamal Mawlood ;
Almahdi, E. M. ;
Thabet, Eman ;
Hadi, Suha M. ;
Mohammed, K., I ;
Alsalem, M. A. ;
Al-Obaidi, Jameel R. ;
Madhloom, H. T. .
JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (07)
[8]   Explainability for artificial intelligence in healthcare: a multidisciplinary perspective [J].
Amann, Julia ;
Blasimme, Alessandro ;
Vayena, Effy ;
Frey, Dietmar ;
Madai, Vince I. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[9]  
Ambee Pollen API, REAL TIME FORECAST P
[10]  
[Anonymous], IBMS WATSON RECOMMEN