DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning

被引:19
作者
Saguy, Alon [1 ]
Alalouf, Onit [1 ]
Opatovski, Nadav [2 ]
Jang, Soohyen [3 ,4 ]
Heilemann, Mike [3 ,4 ]
Shechtman, Yoav [1 ]
机构
[1] Technion Israel Inst Technol, Dept Biomed Engn, Haifa, Israel
[2] Technion Israel Inst Technol, Russell Berrie Nanotechnol Inst, Haifa, Israel
[3] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[4] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, IMPRS Cellular Biophys, Frankfurt, Germany
关键词
SINGLE-MOLECULE MICROSCOPY; SUPERRESOLUTION MICROSCOPY; NETWORK; LIMIT; CELL;
D O I
10.1038/s41592-023-01966-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-molecule localization microscopy (SMLM) has revolutionized biological imaging, improving the spatial resolution of traditional microscopes by an order of magnitude. However, SMLM techniques require long acquisition times, typically a few minutes, to yield a single super-resolved image, because they depend on accumulation of many localizations over thousands of recorded frames. Hence, the capability of SMLM to observe dynamics at high temporal resolution has always been limited. In this work, we present DBlink, a deep-learning-based method for super spatiotemporal resolution reconstruction from SMLM data. The input to DBlink is a recorded video of SMLM data and the output is a super spatiotemporal resolution video reconstruction. We use a convolutional neural network combined with a bidirectional long short-term memory network architecture, designed for capturing long-term dependencies between different input frames. We demonstrate DBlink performance on simulated filaments and mitochondria-like structures, on experimental SMLM data under controlled motion conditions and on live-cell dynamic SMLM. DBlink's spatiotemporal interpolation constitutes an important advance in super-resolution imaging of dynamic processes in live cells. DBlink uses deep learning to capture long-term dependencies between different frames in single-molecule localization microscopy data, yielding super spatiotemporal resolution videos of fast dynamic processes in living cells.
引用
收藏
页码:1939 / 1948
页数:15
相关论文
共 48 条
[1]   Multiple signal classification algorithm for super-resolution fluorescence microscopy [J].
Agarwal, Krishna ;
Machan, Radek .
NATURE COMMUNICATIONS, 2016, 7
[2]   Fourier ring correlation as a resolution criterion for super-resolution microscopy [J].
Banterle, Niccolo ;
Khanh Huy Bui ;
Lemke, Edward A. ;
Beck, Martin .
JOURNAL OF STRUCTURAL BIOLOGY, 2013, 183 (03) :363-367
[3]   An integrated platform for high-throughput nanoscopy [J].
Barentine, Andrew E. S. ;
Lin, Yu ;
Courvan, Edward M. ;
Kidd, Phylicia ;
Liu, Miao ;
Balduf, Leonhard ;
Phan, Timy ;
Rivera-Molina, Felix ;
Grace, Michael R. ;
Marin, Zach ;
Lessard, Mark ;
Chen, Juliana Rios ;
Wang, Siyuan ;
Neugebauer, Karla M. ;
Bewersdorf, Joerg ;
Baddeley, David .
NATURE BIOTECHNOLOGY, 2023, 41 (11) :1549-+
[4]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[5]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[6]   Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging [J].
Chen, Rong ;
Tang, Xiao ;
Zhao, Yuxuan ;
Shen, Zeyu ;
Zhang, Meng ;
Shen, Yusheng ;
Li, Tiantian ;
Chung, Casper Ho Yin ;
Zhang, Lijuan ;
Wang, Ji ;
Cui, Binbin ;
Fei, Peng ;
Guo, Yusong ;
Du, Shengwang ;
Yao, Shuhuai .
NATURE COMMUNICATIONS, 2023, 14 (01)
[7]   Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) [J].
Dertinger, T. ;
Colyer, R. ;
Iyer, G. ;
Weiss, S. ;
Enderlein, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) :22287-22292
[8]   Parameter-free image resolution estimation based on decorrelation analysis [J].
Descloux, A. ;
Grussmayer, K. S. ;
Radenovic, A. .
NATURE METHODS, 2019, 16 (09) :918-+
[9]  
Dosovitskiy A., 2020, ICLR, V20, DOI 10.48550/arXiv.2010.11929
[10]   Mitochondrial form and function [J].
Friedman, Jonathan R. ;
Nunnari, Jodi .
NATURE, 2014, 505 (7483) :335-343