SARS-CoV-2 nonstructural protein 6 from Alpha to Omicron: evolution of a transmembrane protein

被引:7
作者
Feng, Shuchen [1 ]
O'Brien, Amornrat [1 ]
Chen, Da-Yuan [2 ,3 ]
Saeed, Mohsan [2 ,3 ]
Baker, Susan C. [1 ]
机构
[1] Loyola Univ Chicago, Stritch Sch Med, Dept Microbiol & Immunol, Chicago, IL 60660 USA
[2] Boston Univ, Chobanian & Avedisian Sch Med, Dept Biochem & Cell Biol, Boston, MA USA
[3] Natl Emerging Infect Dis Labs NEIDL, Boston, MA USA
关键词
SARS-CoV-2; nonstructural protein 6; nsp6; evolution; nsp6 topology model; attenuation; CORONAVIRUS REPLICATION; TOPOLOGY; VIRUS;
D O I
10.1128/mbio.00688-23
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
There is an ongoing need to evaluate genetic changes in SARS-CoV-2 for effects on transmission and pathogenesis. We recently reported an unexpected role for replicase component nsp6, in addition to changes in spike, in the attenuation of Omicron BA.1. In this commentary, we document a triple-amino-acid deletion in a predicted lumenal domain of nsp6 that was found in multiple, independent variants of SARS-CoV-2, including all recent Omicron lineages. Furthermore, we modeled the predicted structure of nsp6, implicating a multipass transmembrane architecture as conserved in members of the Coronaviridae family. This information can guide future studies investigating the role of nsp6 in the pathogenesis of existing and emerging coronaviruses. We recently reported that mutations in both the spike glycoprotein and nonstructural protein 6 (nsp6) were associated with attenuation of the SARS-CoV-2 Omicron BA.1 variant. While mutations in spike allow evasion of neutralizing antibodies and promote specific modes of viral entry, the role of nsp6 mutations in pathogenesis is less clear. Nsp6 is essential for modifying the endoplasmic reticulum and generating double-membrane vesicles, the site of viral RNA replication. To investigate the evolution of nsp6, we evaluated 91,596 high-confidence human SARS-CoV-2 whole-genome sequences across 19 variants and lineages. While nsp6 of early variants of concern, such as Alpha, Beta, and Gamma, carried a triple amino acid deletion (106-108, termed & UDelta;SGF), the Delta, Epsilon, and Mu lineages retained the ancestral nsp6 sequence. For nsp6 in the emerging Omicron variants, we report a transition from an amino acid 105-107 & UDelta;LSG deletion in BA.1 to increased dominance of the & UDelta;SGF in BA.2 and subsequent lineages. Our findings indicate that deletion within nsp6 was independently selected in multiple lineages of SARS-CoV-2, both early and late in the pandemic. Analysis of SARS-CoV-2-related coronaviruses in bats and pangolins revealed nsp6 sequences similar to the ancestral SARS-CoV-2 virus, indicating that the deletion in nsp6 may be an adaptation to replication in humans. Analysis of nsp6 sequences from multiple coronaviruses predicts a multipass transmembrane protein with a conserved C-terminal domain. Monitoring and evaluating changes in nsp6 and other nonstructural proteins will contribute to our understanding of factors associated with the attenuation of pandemic coronaviruses. IMPORTANCEThere is an ongoing need to evaluate genetic changes in SARS-CoV-2 for effects on transmission and pathogenesis. We recently reported an unexpected role for replicase component nsp6, in addition to changes in spike, in the attenuation of Omicron BA.1. In this commentary, we document a triple-amino-acid deletion in a predicted lumenal domain of nsp6 that was found in multiple, independent variants of SARS-CoV-2, including all recent Omicron lineages. Furthermore, we modeled the predicted structure of nsp6, implicating a multipass transmembrane architecture as conserved in members of the Coronaviridae family. This information can guide future studies investigating the role of nsp6 in the pathogenesis of existing and emerging coronaviruses.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles [J].
Angelini, Megan M. ;
Akhlaghpour, Marzieh ;
Neuman, Benjamin W. ;
Buchmeier, Michael J. .
MBIO, 2013, 4 (04)
[2]   Detection of Nonstructural Protein 6 in Murine Coronavirus-Infected Cells and Analysis of the Transmembrane Topology by Using Bioinformatics and Molecular Approaches [J].
Baliji, Surendranath ;
Cammer, Stephen A. ;
Sobral, Bruno ;
Baker, Susan C. .
JOURNAL OF VIROLOGY, 2009, 83 (13) :6957-6962
[3]  
Biswas Subrata K., 2020, Genomics & Informatics, V18, pe44, DOI 10.5808/GI.2020.18.4.e44
[4]  
Centers for Disease Control and Prevention, 2023, SARS-CoV-2 variant classifications and definitions
[5]   Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation [J].
Chen, Da-Yuan ;
Chin, Chue Vin ;
Kenney, Devin ;
Tavares, Alexander H. ;
Khan, Nazimuddin ;
Conway, Hasahn L. ;
Liu, GuanQun ;
Choudhary, Manish C. ;
Gertje, Hans P. ;
O'Connell, Aoife K. ;
Adams, Scott ;
Kotton, Darrell N. ;
Herrmann, Alexandra ;
Ensser, Armin ;
Connor, John H. ;
Bosmann, Markus ;
Li, Jonathan Z. ;
Gack, Michaela U. ;
Baker, Susan C. ;
Kirchdoerfer, Robert N. ;
Kataria, Yachana ;
Crossland, Nicholas A. ;
Douam, Florian ;
Saeed, Mohsan .
NATURE, 2023, 615 (7950) :143-+
[6]   Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies [J].
Cortese, Mirko ;
Lee, Ji-Young ;
Cerikan, Berati ;
Neufeldt, Christopher J. ;
Oorschot, Viola Mj ;
Koehrer, Sebastian ;
Hennies, Julian ;
Schieber, Nicole L. ;
Ronchi, Paolo ;
Mizzon, Giulia ;
Romero-Brey, Ines ;
Santarella-Mellwig, Rachel ;
Schorb, Martin ;
Boermel, Mandy ;
Mocaer, Karel ;
Beckwith, Marianne S. ;
Templin, Rachel M. ;
Gross, Viktoriia ;
Pape, Constantin ;
Tischer, Christian ;
Frankish, Jamie ;
Horvat, Natalie K. ;
Laketa, Vibor ;
Stanifer, Megan ;
Boulant, Steeve ;
Ruggieri, Alessia ;
Chatel-Chaix, Laurent ;
Schwab, Yannick ;
Bartenschlager, Ralf .
CELL HOST & MICROBE, 2020, 28 (06) :853-+
[7]   RNA replication of mouse hepatitis virus takes place at double-membrane vesicles [J].
Gosert, R ;
Kanjanahaluethai, A ;
Egger, D ;
Bienz, K ;
Baker, SC .
JOURNAL OF VIROLOGY, 2002, 76 (08) :3697-3708
[8]   SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters [J].
Halfmann, Peter J. ;
Iida, Shun ;
Iwatsuki-Horimoto, Kiyoko ;
Maemura, Tadashi ;
Kiso, Maki ;
Scheaffer, Suzanne M. ;
Darling, Tamarand L. ;
Joshi, Astha ;
Loeber, Samantha ;
Singh, Gagandeep ;
Foster, Stephanie L. ;
Ying, Baoling ;
Case, James Brett ;
Chong, Zhenlu ;
Whitener, Bradley ;
Moliva, Juan ;
Floyd, Katharine ;
Ujie, Michiko ;
Nakajima, Noriko ;
Ito, Mutsumi ;
Wright, Ryan ;
Uraki, Ryuta ;
Warang, Prajakta ;
Gagne, Matthew ;
Li, Rong ;
Sakai-Tagawa, Yuko ;
Liu, Yanan ;
Larson, Deanna ;
Osorio, Jorge E. ;
Hernandez-Ortiz, Juan P. ;
Henry, Amy R. ;
Ciuoderis, Karl ;
Florek, Kelsey R. ;
Patel, Mit ;
Odle, Abby ;
Wong, Lok-Yin Roy ;
Bateman, Allen C. ;
Wang, Zhongde ;
Edara, Venkata-Viswanadh ;
Chong, Zhentu ;
Franks, John ;
Jeevan, Trushar ;
Fabrizio, Thomas ;
DeBeauchamp, Jennifer ;
Kercher, Lisa ;
Seiler, Patrick ;
Gonzalez-Reiche, Ana Silvia ;
Sordillo, Emilia Mia ;
Chang, Lauren A. ;
van Baker, Harm .
NATURE, 2022, 603 (7902) :687-+
[9]   SARS-CoV-2 variants, spike mutations and immune escape [J].
Harvey, William T. ;
Carabelli, Alessandro M. ;
Jackson, Ben ;
Gupta, Ravindra K. ;
Thomson, Emma C. ;
Harrison, Ewan M. ;
Ludden, Catherine ;
Reeve, Richard ;
Rambaut, Andrew ;
Peacock, Sharon J. ;
Robertson, David L. .
NATURE REVIEWS MICROBIOLOGY, 2021, 19 (07) :409-424
[10]   SOSUI: classification and secondary structure prediction system for membrane proteins [J].
Hirokawa, T ;
Boon-Chieng, S ;
Mitaku, S .
BIOINFORMATICS, 1998, 14 (04) :378-379