Numerical modeling of wave propagation phenomena in thermo-poroelastic media via discontinuous Galerkin methods

被引:6
作者
Bonetti, Stefano [1 ]
Botti, Michele [1 ]
Mazzieri, Ilario [1 ]
Antonietti, Paola F. [1 ]
机构
[1] Politecn Milan, MOX Dept Math, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Discontinuous Galerkin method; Thermo-poroelasticity; Wave propagation; Polygonal and polyhedral meshes; FINITE-ELEMENT-METHOD; APPROXIMATION;
D O I
10.1016/j.jcp.2023.112275
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present , analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and hp-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-& beta; time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
[11]   Numerical Modelling of Convection-Driven Cooling, Deformation and Fracturing of Thermo-Poroelastic Media [J].
Stefansson, Ivar ;
Keilegavlen, Eirik ;
Halldorsdottir, Sseunn ;
Berre, Inga .
TRANSPORT IN POROUS MEDIA, 2021, 140 (01) :371-394
[12]   A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case [J].
Ward, N. F. Dudley ;
Lahivaara, T. ;
Eveson, S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 :690-727
[13]   An immersed discontinuous Galerkin method for wave propagation in acoustic elastic media [J].
Adjerid, Slimane ;
Lin, Tao ;
Meghaichi, Haroun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 472
[14]   Discontinuous Galerkin Methods for Acoustic Wave Propagation in Polygons [J].
Mueller, Fabian ;
Schotzau, Dominik ;
Schwab, Christoph .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) :1909-1935
[15]   ENERGY CONSERVING LOCAL DISCONTINUOUS GALERKIN METHODS FOR WAVE PROPAGATION PROBLEMS [J].
Xing, Yulong ;
Chou, Ching-Shan ;
Shu, Chi-Wang .
INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) :967-986
[16]   Rayleigh-type wave in thermo-poroelastic media with dual-phase-lag heat conduction [J].
Kumar, Manjeet ;
Lather, Priyanka ;
Fu, Li-Yun ;
Kumari, Neelam ;
Kaswan, Pradeep ;
Li, Nianqi ;
Kumari, Manjeet .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2025, 35 (02) :774-798
[17]   A Discontinuous Galerkin Method for Three-Dimensional Poroelastic Wave Propagation: Forward and Adjoint Problems [J].
Nick Dudley Ward ;
Simon Eveson ;
Timo Lähivaara .
Computational Methods and Function Theory, 2021, 21 :737-777
[18]   AN IMMERSED DISCONTINUOUS GALERKIN METHOD FOR ACOUSTIC WAVE PROPAGATION IN INHOMOGENEOUS MEDIA [J].
Adjerid, Slimane ;
Moon, Kihyo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :A139-A162
[19]   A Discontinuous Galerkin Method for Three-Dimensional Poroelastic Wave Propagation: Forward and Adjoint Problems [J].
Ward, Nick Dudley ;
Eveson, Simon ;
Lahivaara, Timo .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (04) :737-777
[20]   Elastic wave propagation in fractured media using the discontinuous Galerkin method [J].
De Basabe, Jonas D. ;
Sen, Mrinal K. ;
Wheeler, Mary F. .
GEOPHYSICS, 2016, 81 (04) :T163-T174