Numerical modeling of wave propagation phenomena in thermo-poroelastic media via discontinuous Galerkin methods

被引:5
作者
Bonetti, Stefano [1 ]
Botti, Michele [1 ]
Mazzieri, Ilario [1 ]
Antonietti, Paola F. [1 ]
机构
[1] Politecn Milan, MOX Dept Math, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Discontinuous Galerkin method; Thermo-poroelasticity; Wave propagation; Polygonal and polyhedral meshes; FINITE-ELEMENT-METHOD; APPROXIMATION;
D O I
10.1016/j.jcp.2023.112275
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present , analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and hp-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-& beta; time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 47 条
[1]   High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes [J].
Antonietti, P. F. ;
Mazzieri, I. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 :414-437
[2]   DISCONTINUOUS GALERKIN APPROXIMATION OF THE FULLY COUPLED THERMO-POROELASTIC PROBLEM [J].
Antonietti, Paola F. ;
Bonetti, Stefano ;
Botti, Michele .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (02) :A621-A645
[3]   On Mathematical and Numerical Modelling of Multiphysics Wave Propagation with Polytopal Discontinuous Galerkin Methods: a Review [J].
Antonietti, Paola F. ;
Botti, Michele ;
Mazzieri, Ilario .
VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) :997-1028
[4]   A HIGH-ORDER DISCONTINUOUS GALERKIN METHOD FOR THE PORO-ELASTO-ACOUSTIC PROBLEM ON POLYGONAL AND POLYHEDRAL GRIDS [J].
Antonietti, Paola F. ;
Botti, Michele ;
Mazzieri, Ilario ;
Poltri, Simone Nati .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (01) :B1-B28
[5]   Stability Analysis of Polytopic Discontinuous Galerkin Approximations of the Stokes Problem with Applications to Fluid-Structure Interaction Problems [J].
Antonietti, Paola F. ;
Mascotto, Lorenzo ;
Verani, Marco ;
Zonca, Stefano .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
[6]   DISCONTINUOUS GALERKIN APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA ON POLYTOPIC GRIDS [J].
Antonietti, Paola F. ;
Facciola, Chiara ;
Russo, Alessandro ;
Verani, Marco .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :A109-A138
[7]   hp-VERSION COMPOSITE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS ON COMPLICATED DOMAINS [J].
Antonietti, Paola F. ;
Giani, Stefano ;
Houston, Paul .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) :A1417-A1439
[8]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[9]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[10]   On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations [J].
Bassi, F. ;
Botti, L. ;
Colombo, A. ;
Di Pietro, D. A. ;
Tesini, P. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) :45-65