Numerical modeling of wave propagation phenomena in thermo-poroelastic media via discontinuous Galerkin methods

被引:4
|
作者
Bonetti, Stefano [1 ]
Botti, Michele [1 ]
Mazzieri, Ilario [1 ]
Antonietti, Paola F. [1 ]
机构
[1] Politecn Milan, MOX Dept Math, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Discontinuous Galerkin method; Thermo-poroelasticity; Wave propagation; Polygonal and polyhedral meshes; FINITE-ELEMENT-METHOD; APPROXIMATION;
D O I
10.1016/j.jcp.2023.112275
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present , analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and hp-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-& beta; time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Discontinuous Galerkin methods for wave propagation in poroelastic media
    de la Puente, Josep
    Dumbser, Michael
    Kaeser, Martin
    Igel, Heiner
    GEOPHYSICS, 2008, 73 (05) : T77 - T97
  • [2] DISCONTINUOUS GALERKIN APPROXIMATION OF THE FULLY COUPLED THERMO-POROELASTIC PROBLEM
    Antonietti, Paola F.
    Bonetti, Stefano
    Botti, Michele
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (02): : A621 - A645
  • [3] A discontinuous Galerkin method for seismic wave propagation in coupled elastic and poroelastic media
    Zhang, Yijie
    Gao, Jinghuai
    Han, Weimin
    He, Yanbin
    GEOPHYSICAL PROSPECTING, 2019, 67 (05) : 1392 - 1403
  • [4] A discontinuous Galerkin method for wave propagation in orthotropic poroelastic media with memory terms
    Xie, Jiangming
    Ou, M. Yvonne
    Xu, Liwei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [5] Hybridized Discontinuous Galerkin Methods for Wave Propagation
    Fernandez, P.
    Christophe, A.
    Terrana, S.
    Nguyen, N. C.
    Peraire, J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1566 - 1604
  • [6] Optimal discontinuous Galerkin methods for wave propagation
    Chung, Eric T.
    Engquist, Bjorn
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2131 - 2158
  • [7] Hybridized Discontinuous Galerkin Methods for Wave Propagation
    P. Fernandez
    A. Christophe
    S. Terrana
    N. C. Nguyen
    J. Peraire
    Journal of Scientific Computing, 2018, 77 : 1566 - 1604
  • [8] A Nodal Discontinuous Galerkin Solver for Modeling Seismic Wave Propagation in Porous Media
    Boxberg, Marc S.
    Heuel, Janis
    Friederich, Wolfgang
    POROMECHANICS VI: PROCEEDINGS OF THE SIXTH BIOT CONFERENCE ON POROMECHANICS, 2017, : 1490 - 1498
  • [9] WEIGHT-ADJUSTED DISCONTINUOUS GALERKIN METHODS: WAVE PROPAGATION IN HETEROGENEOUS MEDIA
    Chan, Jesse
    Hewett, Russell J.
    Warburton, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06): : A2935 - A2961
  • [10] Numerical Modelling of Convection-Driven Cooling, Deformation and Fracturing of Thermo-Poroelastic Media
    Stefansson, Ivar
    Keilegavlen, Eirik
    Halldorsdottir, Sseunn
    Berre, Inga
    TRANSPORT IN POROUS MEDIA, 2021, 140 (01) : 371 - 394