Dual-branch deep image prior for image denoising

被引:3
|
作者
Xu, Shaoping [1 ]
Cheng, Xiaohui [1 ]
Luo, Jie [2 ]
Xiao, Nan [1 ]
Xiong, Minghai [1 ]
Zhou, Changfei [1 ]
机构
[1] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Affiliated Infect Dis Hosp, Nanchang 330006, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Image denoising Boosting performance Dual-branch architecture Two-stage denoising Basic images Unsupervised fusion;
D O I
10.1016/j.jvcir.2023.103821
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we propose a two-stage denoising approach, which includes generation and fusion stages. Specifically, in the generation stage, we first split the expanding path of the UNet backbone of the standard DIP (deep image prior) network into two branches, converting it into a Y-shaped network (YNet). Then we adopt the initial denoised images obtained with DAGL (dynamic attentive graph learning) and Restormer methods together with the given noisy image as the target images. Finally, we utilize the standard DIP online training routine to generate two complementary basic images, whose image quality is quite improved, with the help of a novel automatic iteration termination mechanism. In the fusion stage, we first split the contracting path of the standard UNet network into two branches for receiving the two basic images generated in the previous stage, and obtain a fused image as the final denoised image in a fully unsupervised manner. Extensive experimental results confirm that our method has a significant improvement over the standard DIP or other unsupervised methods, and outperforms recently proposed supervised denoising models. The noticeable performance improvement is attributed to the proposed hybrid strategy, i.e., we first adopt the supervised denoising methods to process the common content of images substantially, then utilize the unsupervised method to fine-tune the specific details. In other words, we take full advantage of the high performance of the supervised methods and the flexibility of the unsupervised methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Taylor series based dual-branch transformation for learned image compression
    Bao, Youneng
    Tan, Wen
    Zheng, Linfeng
    Meng, Fanyang
    Liu, Wei
    Liang, Yongsheng
    SIGNAL PROCESSING, 2023, 212
  • [42] Classification of hyperspectral image based on dual-branch feature interaction network
    Li, Chenming
    Wang, Xiangyi
    Chen, Zhonghao
    Gao, Hongmin
    Xu, Shufang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3258 - 3279
  • [43] Dual-Branch Subpixel-Guided Network for Hyperspectral Image Classification
    Han, Zhu
    Yang, Jin
    Gao, Lianru
    Zeng, Zhiqiang
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [44] Progressive Dual-Branch Network for Low-Light Image Enhancement
    Cui, Hengshuai
    Li, Jinjiang
    Hua, Zhen
    Fan, Linwei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [45] Bidirectional Mamba with Dual-Branch Feature Extraction for Hyperspectral Image Classification
    Sun, Ming
    Zhang, Jie
    He, Xiaoou
    Zhong, Yihe
    SENSORS, 2024, 24 (21)
  • [46] Dual-branch Transformer for semi-supervised medical image segmentation
    Huang, Xiaojie
    Zhu, Yating
    Shao, Minghan
    Xia, Ming
    Shen, Xiaoting
    Wang, Pingli
    Wang, Xiaoyan
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (10):
  • [47] Learned Image Compression with Dual-Branch Encoder and Conditional Information Coding
    Fu, Haisheng
    Liang, Feng
    Liang, Jie
    Fang, Zhenman
    Zhang, Guohe
    Han, Jingning
    2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 173 - 182
  • [48] Dual-Branch Attention-Assisted CNN for Hyperspectral Image Classification
    Huang, Wei
    Zhao, Zhuobing
    Sun, Le
    Ju, Ming
    REMOTE SENSING, 2022, 14 (23)
  • [49] Dual-Branch Spectral–Spatial Attention Network for Hyperspectral Image Classification
    Zhao, Jinling
    Wang, Jiajie
    Ruan, Chao
    Dong, Yingying
    Huang, Linsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [50] Dual-Branch CNN-Mamba Method for Image Defocus Deblurring
    Zhao, Wenqi
    Wu, Chunlei
    Lu, Jing
    Li, Ran
    APPLIED SCIENCES-BASEL, 2025, 15 (06):