Boosting photo-assisted efficient electrochemical CO2 reduction reaction on transition metal single-atom catalysts supported on the C6N6 nanosheet

被引:2
|
作者
Dutta, Supriti [1 ]
Pati, Swapan K. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Sch Adv Mat, Theoret Sci Unit, Bangalore 560064, India
关键词
EVOLUTION REACTION; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTROCATALYST; SELECTIVITY; GRAPHENE; NITRIDE; WATER; DFT;
D O I
10.1039/d3cp00933e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 reduction to value-added chemicals turns out to be a promising and efficient approach to resolve the increasing energy crisis and global warming. However, the catalytic efficiency of CO2 reduction reaction (CO2RR) to form C-1 products (CO, HCOOH, CH3OH, CH4) needs to be quite efficient. Herein with the help of density functional theory, CO2RR towards C-1 products was investigated on a transition metal (TM = Fe, Co, Ni) embedded C6N6 framework. The stable geometry of the catalysts, CO2 adsorption configurations, and CO2RR mechanisms were systematically studied for all the systems considered. The possible different adsorption configurations and adsorption energy calculations indicated that CO2 could be chemically adsorbed on the Co@C6N6 system. On the other hand, physical adsorption of CO2 is more preferable on Fe@C6N6 and Ni@C6N6 systems. As a competitive reaction, hydrogen evolution reaction (HER) was investigated and the systems were found to show more selectivity for CO2RR than for HER. OCHO formation turned out to be more favorable than COOH formation as initial protonation intermediates for CO2RR on the TM@C6N6 systems. The present work demonstrates that the Co@C6N6 catalyst can favor the electrocatalytic CO2RR among all systems. In addition, the photocatalytic activity of the systems was also investigated. The systems are found to be active for photoreduction of CO2 to CH3OH and CH4 in the presence of reducing agents such as H-2 and H2O as they possess appropriate absorption spectrum in the visible region as well as suitable band edge positions. These findings open a way for designing single atom catalysts for important catalytic reactions.
引用
收藏
页码:15788 / 15797
页数:10
相关论文
共 50 条
  • [41] Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction
    Mohanty, Bishnupad
    Basu, Suddhasatwa
    Jena, Bikash Kumar
    JOURNAL OF ENERGY CHEMISTRY, 2022, 70 : 444 - 471
  • [42] Computational screening and catalytic origin of transition metal supported on g-t-C3N4 as single-atom catalysts for nitrogen reduction reaction
    Hou, Pengfei
    Huang, Yuhong
    Ma, Fei
    Zhu, Gangqiang
    Zhang, Jianmin
    Wei, Xiumei
    Du, Peiyuan
    Liu, Jing
    APPLIED SURFACE SCIENCE, 2022, 599
  • [43] Transient Dangling Active Sites of Fe(III)-N-C Single-Atom Catalyst for Efficient Electrochemical CO2 Reduction Reaction
    Qiu, Yun-Ze
    Liu, Xiao-Meng
    Li, Wenying
    Li, Jun
    Xiao, Hai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [44] Theoretical study of CO2 electrochemical reduction to CH4 on Fe2B2 MBene-supported single-atom catalysts
    Wang, Junkai
    Cai, Yixuan
    Huang, Zhenxia
    Hu, Qianku
    Zhou, Aiguo
    MOLECULAR CATALYSIS, 2025, 574
  • [45] Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts
    Vijay, Sudarshan
    Ju, Wen
    Bruckner, Sven
    Tsang, Sze-Chun
    Strasser, Peter
    Chan, Karen
    NATURE CATALYSIS, 2021, 4 (12) : 1024 - 1031
  • [46] Metal-organic framework-based single-atom catalysts for efficient electrocatalytic CO2 reduction reactions
    Ye, Junqing
    Yan, Jipeng
    Peng, Yunlei
    Li, Fuwei
    Sun, Jian
    CATALYSIS TODAY, 2023, 410 : 68 - 84
  • [47] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763
  • [48] Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M-N4-C Single-Atom Catalysts for Electrochemical CO2 Reduction
    Wang, Jing
    Zheng, Mingyue
    Zhao, Xian
    Fan, Weiliu
    ACS CATALYSIS, 2022, 12 (09): : 5441 - 5454
  • [49] Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Zhao, Chuan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [50] Control over Electrochemical CO2 Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts
    Guo, Jiangyi
    Zhang, Wenlin
    Zhang, Lu-Hua
    Chen, Datong
    Zhan, Jiayu
    Wang, Xueli
    Shiju, N. Raveendran
    Yu, Fengshou
    ADVANCED SCIENCE, 2021, 8 (23)