Boosting photo-assisted efficient electrochemical CO2 reduction reaction on transition metal single-atom catalysts supported on the C6N6 nanosheet

被引:2
|
作者
Dutta, Supriti [1 ]
Pati, Swapan K. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res JNCASR, Sch Adv Mat, Theoret Sci Unit, Bangalore 560064, India
关键词
EVOLUTION REACTION; CARBON-DIOXIDE; ELECTROREDUCTION; ELECTROCATALYST; SELECTIVITY; GRAPHENE; NITRIDE; WATER; DFT;
D O I
10.1039/d3cp00933e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 reduction to value-added chemicals turns out to be a promising and efficient approach to resolve the increasing energy crisis and global warming. However, the catalytic efficiency of CO2 reduction reaction (CO2RR) to form C-1 products (CO, HCOOH, CH3OH, CH4) needs to be quite efficient. Herein with the help of density functional theory, CO2RR towards C-1 products was investigated on a transition metal (TM = Fe, Co, Ni) embedded C6N6 framework. The stable geometry of the catalysts, CO2 adsorption configurations, and CO2RR mechanisms were systematically studied for all the systems considered. The possible different adsorption configurations and adsorption energy calculations indicated that CO2 could be chemically adsorbed on the Co@C6N6 system. On the other hand, physical adsorption of CO2 is more preferable on Fe@C6N6 and Ni@C6N6 systems. As a competitive reaction, hydrogen evolution reaction (HER) was investigated and the systems were found to show more selectivity for CO2RR than for HER. OCHO formation turned out to be more favorable than COOH formation as initial protonation intermediates for CO2RR on the TM@C6N6 systems. The present work demonstrates that the Co@C6N6 catalyst can favor the electrocatalytic CO2RR among all systems. In addition, the photocatalytic activity of the systems was also investigated. The systems are found to be active for photoreduction of CO2 to CH3OH and CH4 in the presence of reducing agents such as H-2 and H2O as they possess appropriate absorption spectrum in the visible region as well as suitable band edge positions. These findings open a way for designing single atom catalysts for important catalytic reactions.
引用
收藏
页码:15788 / 15797
页数:10
相关论文
共 50 条
  • [31] Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction
    Li, Feifei
    Ai, Haoqiang
    Shi, Changmin
    Lo, Kin Ho
    Pan, Hui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (24) : 12886 - 12896
  • [32] Microenvironment Modulation in Carbon-Supported Single-Atom Catalysts for Efficient Electrocatalytic CO2 Reduction
    Song, Pengyu
    Zhu, Pan
    Su, Xiaoran
    Hou, Mengyun
    Zhao, Di
    Zhang, Jiatao
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (20)
  • [33] Emerging single-atom catalysts for efficient electrocatalytic CO2 reduction and water splitting: Recent advances
    Wei, Kunling
    Pan, Keheng
    Qu, Guangfei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 86 : 316 - 342
  • [34] Selective CO2 Reduction over γ-Graphyne Supported Single-Atom Catalysts: Crucial Role of Strain Regulation
    Liu, Tianyang
    Xu, Tianze
    Li, Tianchun
    Jing, Yu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (34) : 24133 - 24140
  • [35] A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction
    Zhang, Huinian
    Li, Jing
    Xi, Shibo
    Du, Yonghua
    Hai, Xiao
    Wang, Junying
    Xu, Haomin
    Wu, Gang
    Zhang, Jia
    Lu, Jiong
    Wang, Junzhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (42) : 14871 - 14876
  • [36] Electrochemical CO2 reduction on metal-silicon centered single-atom dual site catalyst: A computational study
    Chang, Chia -Chi
    Wu, Shiuan-Yau
    Chan, Chen-Wei
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE ADVANCES, 2023, 18
  • [37] Trends of Electrochemical CO2 Reduction Reaction on Transition Metal Oxide Catalysts
    Tayyebi, Ebrahim
    Hussain, Javed
    Abghoui, Younes
    Skulason, Egill
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18) : 10078 - 10087
  • [38] MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO2 to Hydrocarbon Fuels
    Athawale, A.
    Abraham, B. Moses
    Jyothirmai, M. V.
    Singh, Jayant K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51) : 24542 - 24551
  • [39] Heteroatom-Doped Asymmetric Metal-Nx-C Single Atom Catalysts for Electrochemical CO2 Reduction Reaction
    Kong, Linghui
    Wang, Min
    Jiang, Luhua
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
  • [40] S and N coordinated single-atom catalysts for electrochemical CO2 reduction with superior activity and selectivity
    Hou, Pengfei
    Huang, Yuhong
    Ma, Fei
    Wei, Xiumei
    Du, Ruhai
    Zhu, Gangqiang
    Zhang, Jianmin
    Wang, Min
    APPLIED SURFACE SCIENCE, 2023, 619