Splitting of doubly quantized vortices in holographic superfluid of finite temperature

被引:9
作者
Lan, Shanquan [1 ,2 ]
Li, Xin [3 ]
Mo, Jiexiong [1 ]
Tian, Yu [4 ,5 ]
Yan, Yu-Kun [4 ]
Yang, Peng [4 ]
Zhang, Hongbao [6 ]
机构
[1] Lingnan Normal Univ, Dept Phys, Zhanjiang 524048, Peoples R China
[2] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[3] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[6] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
AdS-CFT Correspondence; Gauge-Gravity Correspondence; Holography and Condensed Matter Physics (AdS; CMT); BOSE-EINSTEIN CONDENSATE; VORTEX; STATES;
D O I
10.1007/JHEP05(2023)223
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The temperature effect on the linear instability and the splitting process of a doubly quantized vortex is studied. Using the linear perturbation theory to calculate out the quasi-normal modes of the doubly quantized vortex, we find that the imaginary part of the unstable mode increases with the temperature till some turning temperature, after which the imaginary part of the unstable mode decreases with the temperature. On the other hand, by the fully non-linear numerical simulations, we also examine the real time splitting process of the doubly quantized vortex, where not only do the split singly quantized vortex pair depart from each other, but also revolve around each other. In particular, the characteristic time scale for the splitting process is identified and its temperature dependence is found to be in good agreement with the linear instability analysis in the sense that the larger the imaginary part of the unstable mode is, the longer the splitting time is. Such a temperature effect is expected to be verified in the cold atom experiments in the near future.
引用
收藏
页数:17
相关论文
共 67 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Quantized rotation of atoms from photons with orbital angular momentum [J].
Andersen, M. F. ;
Ryu, C. ;
Clade, Pierre ;
Natarajan, Vasant ;
Vaziri, A. ;
Helmerson, K. ;
Phillips, W. D. .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[3]   Holographic Vortex Liquids and Superfluid Turbulence [J].
Chesler, Paul M. ;
Liu, Hong ;
Adams, Allan .
SCIENCE, 2013, 341 (6144) :368-372
[4]  
Donnelly R.J., 2001, QUANTIZED VORTEX DYN, DOI [10.1007/3-540-45542-6, DOI 10.1007/3-540-45542-6]
[5]   Holographic thermal relaxation in superfluid turbulence [J].
Du, Yiqiang ;
Niu, Chao ;
Tian, Yu ;
Zhang, Hongbao .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12) :1-12
[6]   Dynamics of a vortex dipole in a holographic superfluid [J].
Ewerz, Carlo ;
Samberg, Andreas ;
Wittmer, Paul .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
[7]   Non-thermal fixed point in a holographic superfluid [J].
Ewerz, Carlo ;
Gasenzer, Thomas ;
Karl, Markus ;
Samberg, Andreas .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05)
[8]   Splitting of doubly quantized vortices in dilute Bose-Einstein condensates [J].
Gawryluk, K. ;
Karpiuk, T. ;
Brewczyk, M. ;
Rzazewski, K. .
PHYSICAL REVIEW A, 2008, 78 (02)
[9]   Thermally induced instability of a doubly quantized vortex in a Bose-Einstein condensate [J].
Gawryluk, Krzysztof ;
Brewczyk, Miroslaw ;
Rzazewski, Kazimierz .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (11) :L225-L231
[10]   Ergoregion instabilities in rotating two-dimensional Bose-Einstein condensates: Perspectives on the stability of quantized vortices [J].
Giacomelli, Luca ;
Carusotto, Iacopo .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)