Activity-Stability Balance: The Role of Electron Supply Effect of Support in Acidic Oxygen Evolution

被引:28
作者
Deng, Liming [1 ]
Liu, Shuyi [1 ]
Liu, Di [2 ]
Chang, Yu-Ming [3 ]
Li, Linlin [1 ]
Li, Chunsheng [4 ,5 ]
Sun, Yan [4 ,5 ]
Hu, Feng [1 ]
Chen, Han-Yi [3 ]
Pan, Hui [2 ]
Peng, Shengjie [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[2] Univ Macau, Inst Appl Phys & Mat Engn, Zhuhai 999078, Macao, Peoples R China
[3] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[4] Suzhou Univ Sci & Technol, Sch Chem & Life Sci, Suzhou 215009, Peoples R China
[5] Suzhou Univ Sci & Technol, Key Lab Adv Electrode Mat Novel Solar Cells Petr &, Suzhou 215009, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
electrocatalysts; electron supply effect; oxygen evolution reaction; proton exchange membrane electrolyzers; solution combustion; RUTHENIUM OXIDE; WATER OXIDATION; SITES; PERFORMANCE; NANOSHEETS; EFFICIENT; CATALYST; REDOX; CO3O4; RUO2;
D O I
10.1002/smll.202302238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing efficient and durable electrocatalysts for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzers represents a significant challenge. Herein, the cobalt-ruthenium oxide nano-heterostructures are successfully synthesized on carbon cloth (CoOx/RuOx-CC) for acidic OER through a simple and fast solution combustion strategy. The rapid oxidation process endows CoOx/RuOx-CC with abundant interfacial sites and defect structures, which enhances the number of active sites and the charge transfer at the electrolyte-catalyst interface, promoting the OER kinetics. Moreover, the electron supply effect of the CoOx support allows electrons to transfer from Co to Ru sites during the OER process, which is beneficial to alleviate the ion leaching and over-oxidation of Ru sites, improving the catalyst activity and stability. As a self-supported electrocatalyst, CoOx/RuOx-CC displays an ultralow overpotential of 180 mV at 10 mA cm(-2) for OER. Notably, the PEM electrolyzer using CoOx/RuOx-CC as the anode can be operated at 100 mA cm(-2) stably for 100 h. Mechanistic analysis shows that the strong catalyst-support interaction is beneficial to redistribute the electronic structure of Ru-O bond to weaken its covalency, thereby optimizing the binding energy of OER intermediates and lowering the reaction energy barrier.
引用
收藏
页数:10
相关论文
共 62 条
  • [21] Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution
    Jin, Huanyu
    Liu, Xinyan
    An, Pengfei
    Tang, Cheng
    Yu, Huimin
    Zhang, Qinghua
    Peng, Hong-Jie
    Gu, Lin
    Zheng, Yao
    Song, Taeseup
    Davey, Kenneth
    Paik, Ungyu
    Dong, Juncai
    Qiao, Shi-Zhang
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Tailoring Lattice Oxygen Binding in Ruthenium Pyrochlores to Enhance Oxygen Evolution Activity
    Kuznetsov, Denis A.
    Naeem, Muhammad A.
    Kumar, Priyank, V
    Abdala, Paula M.
    Fedorov, Alexey
    Mueller, Christoph R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (17) : 7883 - 7888
  • [23] Ruthenium Oxide Nanosheets for Enhanced Oxygen Evolution Catalysis in Acidic Medium
    Laha, Sourav
    Lee, Yonghyuk
    Podjaski, Filip
    Weber, Daniel
    Duppel, Viola
    Schoop, Leslie M.
    Pielnhofer, Florian
    Scheurer, Christoph
    Mueller, Kathrin
    Starke, Ulrich
    Reuter, Karsten
    Lotsch, Bettina V.
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (15)
  • [24] Optimizing the Electronic Structure of Ruthenium Oxide by Neodymium Doping for Enhanced Acidic Oxygen Evolution Catalysis
    Li, Lu
    Zhang, Gengwei
    Xu, Jingwen
    He, Huijie
    Wang, Bin
    Yang, Zhimao
    Yang, Shengchun
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (10)
  • [25] Perovskite-Type Solid Solution Nano-Electrocatalysts Enable Simultaneously Enhanced Activity and Stability for Oxygen Evolution
    Liang, Xiao
    Shi, Lei
    Cao, Rui
    Wan, Gang
    Yan, Wensheng
    Chen, Hui
    Liu, Yipu
    Zou, Xiaoxin
    [J]. ADVANCED MATERIALS, 2020, 32 (34)
  • [26] In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation
    Lin, Chao
    Li, Ji-Li
    Li, Xiaopeng
    Yang, Shuai
    Luo, Wei
    Zhang, Yaojia
    Kim, Sung-Hae
    Kim, Dong-Hyung
    Shinde, Sambhaji S.
    Li, Ye-Fei
    Liu, Zhi-Pan
    Jiang, Zheng
    Lee, Jung-Ho
    [J]. NATURE CATALYSIS, 2021, 4 (12) : 1012 - 1023
  • [27] Operando Identification of Dual Active Sites in Ca2IrO4 Nanocrystals with Yttrium Substitutions Boosting Acidic Oxygen Evolution Reaction
    Liu, Yuying
    Cai, Liang
    Ji, Qianqian
    Wang, Chao
    Liu, Ziyi
    Lv, Liyang
    Tang, Bing
    Duan, Hengli
    Hu, Fengchun
    Wang, Huijuan
    Li, Na
    Sun, Zhihu
    Yan, Wensheng
    [J]. ACS ENERGY LETTERS, 2022, 7 (11) : 3798 - 3806
  • [28] Efficient and stable noble-metal-free catalyst for acidic water oxidation
    Pan, Sanjiang
    Li, Hao
    Liu, Dan
    Huang, Rui
    Pan, Xuelei
    Ren, Dan
    Li, Jun
    Shakouri, Mohsen
    Zhang, Qixing
    Wang, Manjing
    Wei, Changchun
    Mai, Liqiang
    Zhang, Bo
    Zhao, Ying
    Wang, Zhenbin
    Graetzel, Michael
    Zhang, Xiaodan
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [29] RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance
    Qin, Yin
    Yu, Tingting
    Deng, Sihao
    Zhou, Xiao-Ye
    Lin, Dongmei
    Zhang, Qian
    Jin, Zeyu
    Zhang, Danfeng
    He, Yan-Bing
    Qiu, Hua-Jun
    He, Lunhua
    Kang, Feiyu
    Li, Kaikai
    Zhang, Tong-Yi
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [30] Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces
    Rao, Reshma R.
    Kolb, Manuel J.
    Giordano, Livia
    Pedersen, Anders Filsoe
    Katayama, Yu
    Hwang, Jonathan
    Mehta, Apurva
    You, Hoydoo
    Lunger, Jaclyn R.
    Zhou, Hua
    Halck, Niels Bendtsen
    Vegge, Tejs
    Chorkendorff, Ib
    Stephens, Ifan E. L.
    Shao-Horn, Yang
    [J]. NATURE CATALYSIS, 2020, 3 (06) : 516 - 525